## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( eval = FALSE, collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- # library(rsat) # set_credentials("rsat.package","UpnaSSG.2021") ## ----search_review------------------------------------------------------------ # ip <- st_sf(st_as_sfc(st_bbox(c( # xmin = -9.755859, # xmax = 4.746094, # ymin = 35.91557, # ymax = 44.02201 # ), crs = 4326))) # toi <- seq(as.Date("2021-01-10"),as.Date("2021-01-15"),1) ## ----------------------------------------------------------------------------- # db.path <- file.path(tempdir(),"database") # ds.path <- file.path(tempdir(),"datasets") # dir.create(db.path) # dir.create(ds.path) ## ----------------------------------------------------------------------------- # filomena <- new_rtoi(name = "filomena", # region = ip, # db_path = db.path, # rtoi_path = ds.path) ## ----------------------------------------------------------------------------- # rsat_search(region = filomena, product = c("mod09ga"), dates = toi) ## ----------------------------------------------------------------------------- # rsat_download(filomena) ## ---- eval=FALSE-------------------------------------------------------------- # rsat_mosaic(filomena) ## ---- eval=FALSE-------------------------------------------------------------- # list.files(file.path(ds.path, "filomena", "Modis/mod09ga/mosaic"), full.name = TRUE) ## ----------------------------------------------------------------------------- # plot(filomena, as.Date("2021-01-11")) ## ----------------------------------------------------------------------------- # plot(filomena, as.Date("2021-01-11"),xsize = 500, ysize = 500) ## ----------------------------------------------------------------------------- # plot(filomena, # as.Date("2021-01-11"), # xsize = 500, # ysize = 500, # band_name = c("swir1", "nir", "blue")) ## ----basic_ndsi, eval = FALSE------------------------------------------------- # NDSI = function(green, swir1){ # ndsi <- (green - swir1)/(green + swir1) # return(ndsi) # } ## ----basic_variables---------------------------------------------------------- # show_variables() ## ----basic_derive, eval = FALSE----------------------------------------------- # rsat_derive(filomena, product = "mod09ga", variable = "ndsi", fun = NDSI) ## ----------------------------------------------------------------------------- # plot(filomena, # as.Date("2021-01-11"), # variable = "ndsi", # xsize = 500, # ysize = 500, # zlim = c(-1,1)) ## ----basic_cloud, eval=FALSE-------------------------------------------------- # rsat_cloudMask(filomena) ## ----basic_ndsi_import, eval = FALSE------------------------------------------ # ndsi.img <- rsat_get_raster(filomena, "mod09ga", "ndsi") # ndsi.img <- clamp(ndsi.img, -1, 1) ## ----basic_mask, eval = FALSE------------------------------------------------- # clds.msk <- rsat_get_raster(filomena, "mod09ga", "CloudMask") ## ----basic_mask_resample------------------------------------------------------ # clds.msk <- resample(clds.msk, ndsi.img, method = "ngb") ## ----basic_mask_apply--------------------------------------------------------- # ndsi.filt <- ndsi.img * clds.msk # names(ndsi.filt) <- names(clds.msk) # keep the names ## ----basic_composite---------------------------------------------------------- # snow.spain <- calc(ndsi.filt, max, na.rm = TRUE) ## ----basic_ndsi_map----------------------------------------------------------- # library(tmap) # tm_shape(snow.spain) + tm_raster(style = "cont")