## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "", prompt = TRUE, fig.align = "center" ) library("rsae") ## ----------------------------------------------------------------------------- data("landsat") ## ----------------------------------------------------------------------------- landsat[32:34,] ## ----------------------------------------------------------------------------- bhfmodel <- saemodel(formula = HACorn ~ PixelsCorn + PixelsSoybeans, area = ~ CountyName, data = subset(landsat, subset = (outlier == FALSE))) ## ----------------------------------------------------------------------------- mlfit <- fitsaemodel(method = "ml", bhfmodel) ## ----------------------------------------------------------------------------- mlfit ## ----------------------------------------------------------------------------- summary(mlfit) ## ----echo = FALSE------------------------------------------------------------- set.seed(12345) n <- 200; beta <- c(1, 1) cst <- rep(1, n) x <- rnorm(n) y <- as.matrix(cbind(cst, x)) %*% beta + rnorm(n) areaid <- rep(1:10, each=10) df <- data.frame(y=y, x=x, areaid=areaid) m <- saemodel(y ~ x, area=~areaid, data=df) fitsaemodel("ml", m) ## ----------------------------------------------------------------------------- huberfit <- fitsaemodel("huberm", bhfmodel, k = 1.5) ## ----------------------------------------------------------------------------- huberfit ## ----------------------------------------------------------------------------- summary(huberfit) ## ----eval = FALSE------------------------------------------------------------- # robpredict(fit, areameans = NULL, k = NULL, reps = NULL, progress_bar = TRUE) ## ----------------------------------------------------------------------------- dat <- unique(landsat[-33, c("MeanPixelsCorn", "MeanPixelsSoybeans", "CountyName")]) dat <- cbind(rep(1,12), dat) rownames(dat) <- dat$CountyName dat <- dat[,1:3] dat ## ----------------------------------------------------------------------------- pred <- robpredict(mlfit, areameans = dat) pred ## ----------------------------------------------------------------------------- pred <- robpredict(mlfit, areameans = dat, reps = 100, progress_bar = FALSE) pred ## ----------------------------------------------------------------------------- est <- fitsaemodel("ml", bhfmodel, niter = 3) ## ----------------------------------------------------------------------------- est ## ----------------------------------------------------------------------------- convergence(est)