## ------------------------------------------------------------------------ library(rrr) ## ------------------------------------------------------------------------ library(dplyr) data(tobacco) tobacco <- as_data_frame(tobacco) glimpse(tobacco) ## ------------------------------------------------------------------------ tobacco_x <- tobacco %>% select(starts_with("X")) tobacco_y <- tobacco %>% select(starts_with("Y")) ## ------------------------------------------------------------------------ GGally::ggcorr(tobacco_x) ## ------------------------------------------------------------------------ GGally::ggcorr(tobacco_y) ## ------------------------------------------------------------------------ ## multivariate regression x <- as.matrix(tobacco_x) y <- as.matrix(tobacco_y) multivar_reg <- t(cov(y, x) %*% solve(cov(x))) ## separate multiple regression lm1 <- lm(y[,1] ~ x)$coeff lm2 <- lm(y[,2] ~ x)$coeff lm3 <- lm(y[,3] ~ x)$coeff ## ------------------------------------------------------------------------ multivar_reg cbind(lm1, lm2, lm3) ## ------------------------------------------------------------------------ args(rank_trace) ## ------------------------------------------------------------------------ ### use the identity matrix for gamma rank_trace(tobacco_x, tobacco_y) ## ------------------------------------------------------------------------ rank_trace(tobacco_x, tobacco_y, plot = FALSE) ## ------------------------------------------------------------------------ ### use inverse of estimated covariance of Y for gamma rank_trace(tobacco_x, tobacco_y, type = "cva") ## ------------------------------------------------------------------------ #rank_trace(tobacco_x, tobacco_y, type = "cva", plot = FALSE) ## ------------------------------------------------------------------------ args(rrr) ## ------------------------------------------------------------------------ rrr(tobacco_x, tobacco_y, rank = "full") ## ------------------------------------------------------------------------ args(residuals) ## ------------------------------------------------------------------------ residuals(tobacco_x, tobacco_y, rank = 1, plot = FALSE) ## ------------------------------------------------------------------------ residuals(tobacco_x, tobacco_y, rank = 1) ## ------------------------------------------------------------------------ residuals(tobacco_x, tobacco_y, rank = 1, plot = FALSE) ## ----message = FALSE, warning = FALSE------------------------------------ data(pendigits) digits <- as_data_frame(pendigits) %>% select(-V36) glimpse(digits) ## ------------------------------------------------------------------------ digits_features <- digits %>% select(-V35) digits_class <- digits %>% select(V35) ## ------------------------------------------------------------------------ GGally::ggcorr(digits_features) ## ------------------------------------------------------------------------ rrr(digits_features, digits_features, type = "pca")$goodness_of_fit ## ------------------------------------------------------------------------ rank_trace(digits_features, digits_features, type = "pca") ## ------------------------------------------------------------------------ rank_trace(digits_features, digits_features, type = "pca", plot = FALSE) ## ------------------------------------------------------------------------ args(pairwise_plot) ## ------------------------------------------------------------------------ pairwise_plot(digits_features, digits_class, type = "pca") ## ------------------------------------------------------------------------ pairwise_plot(digits_features, digits_class, type = "pca", pair_x = 1, pair_y = 3) ## ------------------------------------------------------------------------ #args(pca_allpairs_plot) ## ------------------------------------------------------------------------ #pca_allpairs_plot(digits_features, rank = 3, class_labels = digits_class) ## ------------------------------------------------------------------------ rrr(digits_features, digits_features, type = "pca", rank = 3) ## ------------------------------------------------------------------------ ### COMBO-17 galaxy data data(COMBO17) galaxy <- as_data_frame(COMBO17) %>% select(-starts_with("e."), -Nr, -UFS:-IFD) %>% na.omit() glimpse(galaxy) ## ------------------------------------------------------------------------ galaxy_x <- galaxy %>% select(-Rmag:-chi2red) galaxy_y <- galaxy %>% select(Rmag:chi2red) ## ------------------------------------------------------------------------ GGally::ggcorr(galaxy_x) ## ------------------------------------------------------------------------ GGally::ggcorr(galaxy_y) ## ------------------------------------------------------------------------ rank_trace(galaxy_x, galaxy_y, type = "cva") ## ------------------------------------------------------------------------ residuals(galaxy_x, galaxy_y, type = "cva", rank = 2, k = 0.001, plot = FALSE) ## ------------------------------------------------------------------------ residuals(galaxy_x, galaxy_y, type = "cva", rank = 2, k = 0.001) ## ------------------------------------------------------------------------ pairwise_plot(galaxy_x, galaxy_y, type = "cva", pair_x = 1, k = 0.0001) pairwise_plot(galaxy_x, galaxy_y, type = "cva", pair_x = 2, k = 0.0001) ## ------------------------------------------------------------------------ pairwise_plot(galaxy_x, galaxy_y, type = "cva", pair_x = 3) pairwise_plot(galaxy_x, galaxy_y, type = "cva", pair_x = 6) ## ------------------------------------------------------------------------ rrr(galaxy_x, galaxy_y, type = "cva", rank = 2, k = 0.0001) ## ------------------------------------------------------------------------ data(iris) iris <- as_data_frame(iris) glimpse(iris) ## ------------------------------------------------------------------------ iris_features <- iris %>% select(-Species) iris_class <- iris %>% select(Species) ## ------------------------------------------------------------------------ pairwise_plot(iris_features, iris_class, type = "lda", k = 0.0001) ## ------------------------------------------------------------------------ rrr(iris_features, iris_class, type = "lda", k = 0.0001) ## ------------------------------------------------------------------------ scores(iris_features, iris_class, type = "lda", k = 0.0001)