## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, tidy = FALSE) options(width = 80) library(knitr) library(rmarkdown) library(rmcorr) library(corrplot) ## ----eval = FALSE------------------------------------------------------------- # #Install corrplot # install.packages("corrplot") # require(corrplot) ## ----------------------------------------------------------------------------- dist_rmc_mat <- rmcorr_mat(participant = Subject, variables = c("Blindwalk Away", "Blindwalk Toward", "Triangulated BW", "Verbal", "Visual matching"), dataset = twedt_dist_measures, CI.level = 0.95) corrplot(dist_rmc_mat$matrix) ## ----------------------------------------------------------------------------- #Number of models being plotted n.models <- length(dist_rmc_mat$models) #Change graphing parameters to plot side-by-side #with narrower margins par(mfrow = c(3,4), mar = c(2.75, 2.4, 2.4, 1.4)) for (i in 1:n.models) { plot(dist_rmc_mat$models[[i]]) } #Reset graphing parameters #dev.off() ## ----------------------------------------------------------------------------- #Third component: Summary dist_rmc_mat$summary #p-values only dist_rmc_mat$summary$p.vals #Vector of original, unadjusted p-values for all 10 comparisons p.vals <- dist_rmc_mat$summary$p.vals p.vals.bonferroni <- p.adjust(p.vals, method = "bonferroni", n = length(p.vals)) p.vals.fdr <- p.adjust(p.vals, method = "fdr", n = length(p.vals)) #All p-values together all.pvals <- cbind(p.vals, p.vals.bonferroni, p.vals.fdr) colnames(all.pvals) <- c("Unadjusted", "Bonferroni", "fdr") round(all.pvals, digits = 5)