## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, tidy = FALSE) options(width = 80) library(knitr) library(rmarkdown) library(rmcorr) ## ----------------------------------------------------------------------------- set.seed(532) boot.blandrmc <- rmcorr(Subject, PaCO2, pH, bland1995, CIs = "bootstrap", nreps = 100, bstrap.out = T) boot.blandrmc ## ----------------------------------------------------------------------------- boot.rmcorr.samplingdist <- round(boot.blandrmc$resamples, digits = 2) boot.rmcorr.mean <- mean(boot.blandrmc$resamples) boot.rmcorr.median <- median(boot.blandrmc$resamples) x.vals <- sprintf("%.2f", seq(-0.80, 0.00, by = 0.10)) hist(boot.rmcorr.samplingdist, main = "Sampling Distribution of Bootstrapped Effect Sizes", xaxt = "n", xlab = "Effect Size", las = 1) abline(v = boot.rmcorr.mean, col = "red", lwd = 2) abline(v = boot.rmcorr.median, col = "blue", lwd = 2) axis(1, at = as.numeric(x.vals), labels = x.vals) #Compare point-est effect for bootstrap vs. non-bootstrap model #Boostrapped effect sizes #Mean boot.rmcorr.mean #Median boot.rmcorr.median #Non-bootstrapped blandrmc <- rmcorr(Subject, PaCO2, pH, bland1995) blandrmc$r