## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, tidy = FALSE) options(width = 80) library(knitr) library(rmarkdown) library(rmcorr) library(cocor) ## ----eval = FALSE------------------------------------------------------------- # #Install cocor # install.packages("cocor") # require(cocor) ## ----------------------------------------------------------------------------- #1) Run rmcorr on two different datasets model1.marusich2016_exp2 <- rmcorr(Pair, HVT_capture, MARS, marusich2016_exp2) model1.marusich2016_exp2 model2.gilden2010 <- rmcorr(sub, rt, acc, gilden2010 ) model2.gilden2010 #2) Extract relevant parameters #Model 1 rmcorr1 <- model1.marusich2016_exp2$r rmcorr1 n1 <- model1.marusich2016_exp2$df + 2 #note the same kludge as power above n1 #this is the effective sample size #Model 2 rmcorr2 <- model2.gilden2010$r rmcorr2 n2 <- model2.gilden2010$df + 2 n2 #3) Compare the two indendent rmcorr coefficients cocor.indep.groups(rmcorr1, rmcorr2, n1, n2, var.labels = c(model1.marusich2016_exp2$var[2:3], model2.gilden2010$vars[2:3])) ## ----------------------------------------------------------------------------- variables.overlap<- c("Blindwalk Away", "Blindwalk Toward", "Triangulated BW") dist_rmc_mat_overlap <- rmcorr_mat(participant = Subject, variables = variables.overlap, dataset = twedt_dist_measures, CI.level = 0.95) #dist_rmc_mat_action$summary #Use summary component model1.bwa.bwt <- dist_rmc_mat_overlap$summary[1,] model2.bwa.tri <- dist_rmc_mat_overlap$summary[2,] model3.bwt.tri <- dist_rmc_mat_overlap$summary[3,] r.jk <- model1.bwa.bwt$rmcorr.r r.jh <- model2.bwa.tri$rmcorr.r #overlap r.kh <- model3.bwt.tri$rmcorr.r #Since there is missing data, the results are unbalanced. We use the average effective sample size. n <- mean(dist_rmc_mat_overlap$summary$effective.N) cocor.dep.groups.overlap(r.jk, r.jh, r.kh, n, alternative = "two.sided", test = "all", var.labels = variables.overlap) #Same as variables used in rmcorr_mat() ## ----------------------------------------------------------------------------- variables.nonoverlap <- c("Blindwalk Away", "Blindwalk Toward", "Verbal", "Visual matching") dist_rmc_mat_nonoverlap <- rmcorr_mat(participant = Subject, variables = variables.nonoverlap, dataset = twedt_dist_measures, CI.level = 0.95) dist_rmc_mat_nonoverlap$summary #Use summary component model1.bwa.bwt <- dist_rmc_mat_nonoverlap$summary[1,] model2.verb.vis <- dist_rmc_mat_nonoverlap$summary[6,] model3.bwa.verb <- dist_rmc_mat_nonoverlap$summary[2,] model4.bwa.vis <- dist_rmc_mat_nonoverlap$summary[3,] model5.bwt.verb <- dist_rmc_mat_nonoverlap$summary[4,] model6.bwt.vis <- dist_rmc_mat_nonoverlap$summary[5,] #Cheatsheet #j = bwa #k = bwt #h = verb #m = vis r.jk <- model1.bwa.bwt$rmcorr.r #Action measures r.hm <- model2.verb.vis$rmcorr.r #Direct measures r.jh <- model3.bwa.verb$rmcorr.r #bwa ~ verb r.jm <- model4.bwa.vis$rmcorr.r #bwa ~ vis r.kh <- model5.bwt.verb$rmcorr.r #bwt ~ verb r.km <- model6.bwt.vis$rmcorr.r #bwt ~ vis #Since there is missing data, we use the average effective sample size. n <- round(mean(dist_rmc_mat_nonoverlap$summary$effective.N), digits = 0) + 2 cocor.dep.groups.nonoverlap(r.jk, r.hm, r.jh, r.jm, r.kh, r.km, n, alternative = "two.sided", test = "all", var.labels = variables.nonoverlap) #Same as variables used in rmcorr_mat()