## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(rgTest) ## ----------------------------------------------------------------------------- set.seed(100) d=200 vmu = rep(1.1/sqrt(d),d) vsd = c(rep(1.1, d/5), rep(1, d-d/5)) num1 = 100 num2 = 100 s1 = matrix(0,num1,d) # sample 1 s2 = matrix(0,num2,d) # sample 2 for (i in 1:num1) { s1[i,] = rnorm(d) } for (i in 1:(num2)) { s2[i,] = rnorm(d, mean = vmu, sd = vsd) } num1 = nrow(s1) # number of observations in sample 1 num2 = nrow(s2) # number of observations in sample 2 ## ---- fig.width = 8, fig.height = 8------------------------------------------- plot_dat = cbind(as.data.frame(rbind(s1[,1:5], s2[,1:5])), label = rep(c('sample 1', 'sample 2'), each = 100)) my_cols = c("#00AFBB", "#E7B800") pairs(plot_dat[, 1:5], col = my_cols[as.factor(plot_dat$label)]) ## ----------------------------------------------------------------------------- res1 = rg.test(data.X = s1, data.Y = s2, n1 = num1, n2 = num2, k = 5, weigh.fun = weiMax, perm.num = 1000, progress_bar = F) ## ---- echo=FALSE-------------------------------------------------------------- type = c('robust generalized(asymptotic)', 'robust max-type(asymptotic)', 'robust generalized(permutation)', 'robust max-type(permutation)') test.statistic = c(res1$asy.gen.statistic, res1$asy.max.statistic, NA, NA) p.value = c(res1$asy.gen.pval, res1$asy.max.pval, res1$perm.gen.pval, res1$perm.max.pval) res_tbl = as.data.frame(cbind(type, test.statistic, p.value)) knitr::kable(res_tbl, col.names = gsub("[.]", " ", names(res_tbl))) ## ----------------------------------------------------------------------------- data = rbind(s1, s2) dist = dist(as.matrix(data)) res2 = rg.test(dis = dist, n1 = num1, n2 = num2, k = 5, weigh.fun = weiMax, perm.num = 1000) ## ---- echo=FALSE-------------------------------------------------------------- type = c('robust generalized(asymptotic)', 'robust max-type(asymptotic)', 'robust generalized(permutation)', 'robust max-type(permutation)') test.statistic = c(res2$asy.gen.statistic, res2$asy.max.statistic, NA, NA) p.value = c(res2$asy.gen.pval, res2$asy.max.pval, res2$perm.gen.pval, res2$perm.max.pval) res_tbl = as.data.frame(cbind(type, test.statistic, p.value)) knitr::kable(res_tbl, col.names = gsub("[.]", " ", names(res_tbl))) ## ----------------------------------------------------------------------------- E = kmst(dis=dist, k=5) res3 = rg.test(E = E, n1 = num1, n2 = num2, weigh.fun = weiMax, perm.num = 1000) ## ---- echo=FALSE-------------------------------------------------------------- type = c('robust generalized(asymptotic)', 'robust max-type(asymptotic)', 'robust generalized(permutation)', 'robust max-type(permutation)') test.statistic = c(res3$asy.gen.statistic, res3$asy.max.statistic, NA, NA) p.value = c(res3$asy.gen.pval, res3$asy.max.pval, res3$perm.gen.pval, res3$perm.max.pval) res_tbl = as.data.frame(cbind(type, test.statistic, p.value)) knitr::kable(res_tbl, col.names = gsub("[.]", " ", names(res_tbl)))