--- title: "Denormalize-A-DataFrame" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Denormalize-A-DataFrame} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Vignette Build Datetime ```{r built} message(paste0('Datetime: ',Sys.Date(),':',Sys.time())) ``` ## Load Libraries ```{r setup, message=FALSE} library(repfun) library(dplyr) library(kableExtra) ``` ## Set Up the Reporting Environment ```{r envir} tmpdr <- tempdir() datdir <- file.path(gsub("\\","/",tmpdr,fixed=TRUE),"datdir") dir.create(datdir,showWarnings=FALSE) repfun::copydata(datdir) repfun::rs_setup(D_POP="SAFFL",D_POPLBL="Safety", D_POPDATA=repfun::adsl %>% dplyr::filter(SAFFL =='Y'), D_SUBJID=c("STUDYID","USUBJID"), R_ADAMDATA=datdir) repfun:::rfenv$G_POPDATA %>% dplyr::mutate(TRT01AN=ifelse(TRT01A=='Placebo',1,ifelse(TRT01A=='Xanomeline Low Dose',2,3))) %>% repfun::ru_labels(varlabels=list('TRT01AN'='Actual Treatment for Period 01 (n)')) -> G_POPDATA ``` ## Read in ADAE and Apply Population ```{r update} adae <- repfun:::rfenv$adamdata$adae.rda() %>% select(-SAFFL) %>% repfun::ru_getdata(G_POPDATA, c("STUDYID", "USUBJID"), keeppopvars=c("TRT01AN", "TRT01A")) ``` ## Generate Counts and Percents for AE Body System and Preferred Term ```{r cntper} aesum <- repfun::ru_freq(adae, dsetindenom=G_POPDATA, countdistinctvars=c('STUDYID','USUBJID'), groupbyvarsnumer=c('TRT01AN','TRT01A','AEBODSYS','AEDECOD'), anyeventvars = c('AEBODSYS','AEDECOD'), anyeventvalues = c('ANY EVENT','ANY EVENT'), groupbyvarsdenom=c('TRT01AN'), resultstyle="NUMERPCT", totalforvar=c('TRT01AN'), totalid=99, totaldecode='Total', codedecodevarpairs=c("TRT01AN", "TRT01A"), varcodelistpairs=c(""), codelistnames=list(), resultpctdps=0) ``` ## Denormalize the AE Counts and Percents Data Set ```{r denorm} aesum_t <- repfun::ru_denorm(aesum,varstodenorm=c("tt_result", "PERCENT"), groupbyvars=c("tt_summarylevel", "AEBODSYS", "AEDECOD"), acrossvar="TRT01AN", acrossvarlabel="TRT01A", acrossvarprefix=c("tt_ac", "tt_p")) %>% dplyr::arrange(tt_summarylevel, AEBODSYS, AEDECOD) ``` ## Display the Denormalized AE Counts and Percents Data Set ```{r results} lbls <- sapply(aesum_t,function(x){attr(x,"label")}) knitr::kable(head(aesum_t,10), col.names=paste(names(lbls),lbls,sep=": "), caption = "Denormalized Data Set for Counts and Percents") %>% kable_styling(full_width = T) %>% column_spec(c(2,3), width_min = c('2in','2in')) ``` ## Derive Summary Statistics for Baseline Characteristics Data ```{r cntper2} demstats <- repfun::ru_sumstats(G_POPDATA, analysisvars=c("AGE","TRTDURD"), groupbyvars=c("STUDYID","TRT01AN"), codedecodevarpairs=c("TRT01AN", "TRT01A"), totalforvar="TRT01AN", totalid=99, totaldecode="Total", statsinrowsyn = "Y", analysisvardps=list("AGE"=1,"TRTDURD"=2), statslist=c("n", "mean", "median", "sd", "min", "max")) ``` ## Denormalize the Baseline Characteristics Summary Statistics Data Set ```{r denorm2} demprod_t <- repfun::ru_denorm(demstats, varstodenorm=c("tt_result"), groupbyvars=c("tt_avid", "tt_avnm", "tt_svid", "tt_svnm"), acrossvar="TRT01AN", acrossvarlabel="TRT01A", acrossvarprefix=c("tt_ac")) ``` ## Display the Denormalized Baseline Characteristics Summary Statistics Data Set ```{r results2} lbls <- sapply(demprod_t,function(x){attr(x,"label")}) knitr::kable(head(demprod_t,10), col.names=paste(names(lbls),lbls,sep=": "), caption = "Denormalized Data Set for Baseline Characteristics Summary Statistics") %>% kable_styling(full_width = T) %>% column_spec(c(2), width_min = c('3in')) ```