Title: | Density, Distribution, and Sampling Functions for Evidence Accumulation Models |
Version: | 1.0-5 |
Description: | Calculate the probability density functions (PDFs) for two threshold evidence accumulation models (EAMs). These are defined using the following Stochastic Differential Equation (SDE), dx(t) = v(x(t),t)*dt+D(x(t),t)*dW, where x(t) is the accumulated evidence at time t, v(x(t),t) is the drift rate, D(x(t),t) is the noise scale, and W is the standard Wiener process. The boundary conditions of this process are the upper and lower decision thresholds, represented by b_u(t) and b_l(t), respectively. Upper threshold b_u(t) > 0, while lower threshold b_l(t) < 0. The initial condition of this process x(0) = z where b_l(t) < z < b_u(t). We represent this as the relative start point w = z/(b_u(0)-b_l(0)), defined as a ratio of the initial threshold location. This package generates the PDF using the same approach as the 'python' package it is based upon, 'PyBEAM' by Murrow and Holmes (2023) <doi:10.3758/s13428-023-02162-w>. First, it converts the SDE model into the forwards Fokker-Planck equation dp(x,t)/dt = d(v(x,t)*p(x,t))/dt-0.5*d^2(D(x,t)^2*p(x,t))/dx^2, then solves this equation using the Crank-Nicolson method to determine p(x,t). Finally, it calculates the flux at the decision thresholds, f_i(t) = 0.5*d(D(x,t)^2*p(x,t))/dx evaluated at x = b_i(t), where i is the relevant decision threshold, either upper (i = u) or lower (i = l). The flux at each thresholds f_i(t) is the PDF for each threshold, specifically its PDF. We discuss further details of this approach in this package and 'PyBEAM' publications. Additionally, one can calculate the cumulative distribution functions of and sampling from the EAMs. |
Suggests: | knitr, rmarkdown |
VignetteBuilder: | knitr |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
URL: | https://github.com/RaphaelHartmann/ream |
BugReports: | https://github.com/RaphaelHartmann/ream/issues |
NeedsCompilation: | yes |
Packaged: | 2024-09-25 08:30:23 UTC; hartmann |
Author: | Raphael Hartmann |
Maintainer: | Raphael Hartmann <raphael.hartmann@protonmail.com> |
Repository: | CRAN |
Date/Publication: | 2024-09-26 11:30:10 UTC |
Continuous Dual-Stage Two-Phase Model of Selective Attention
Description
A continuous approximation of the Dual-Stage Two-Phase model of conflict tasks. The Dual-Stage Two-Phase model assumes that choice in conflict tasks involves two processes: a decision process and a target selection process. The target selection process is an SDDM, while the decision process is an SDDM but with drift rate
v(x,t) = (1 - w(t))*(\mu_t + c*\mu_{nt}) + w(t)*\mu_2,
where w(t) = 0
before target selection and w(t) = 1
after target selection.
A full derivation of this model is in the ream publication.
Usage
dCDSTP(rt, resp, phi, x_res = "default", t_res = "default")
pCDSTP(rt, resp, phi, x_res = "default", t_res = "default")
rCDSTP(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological review, 117(3), 759.
Examples
# Probability density function
dCDSTP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 0.5, -0.5, -1.0, -0.5, 8.0, 4.0, 1.0, 2.0, 1.3, 1.3, 0.0, 0.0, 1.0))
# Cumulative distribution function
pCDSTP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 0.5, -0.5, -1.0, -0.5, 8.0, 4.0, 1.0, 2.0, 1.3, 1.3, 0.0, 0.0, 1.0))
# Random sampling
rCDSTP(n = 100, phi = c(0.3, 0.5, 0.5, -0.5, -1.0, -0.5, 8.0, 4.0, 1.0, 2.0, 1.3, 1.3,
0.0, 0.0, 1.0), dt = 0.001)
Custom Time-Dependent Drift Diffusion Model
Description
Density (PDF), distribution function (CDF), and random sampler for a custom time-dependent (CSTM_T) drift diffusion model.
Usage
dCSTM_T(rt, resp, phi, x_res = "default", t_res = "default")
pCSTM_T(rt, resp, phi, x_res = "default", t_res = "default")
rCSTM_T(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in your specified order |
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods, 1-21.
Examples
# Probability density function
dCSTM_T(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 0.75, 0.0, 0.0, 1.0))
Custom Time- and Weight-Dependent Drift Diffusion Model
Description
Density (PDF), distribution function (CDF), and random sampler for a custom time- and weight-dependent (CSTM_TW) drift diffusion model.
Usage
dCSTM_TW(rt, resp, phi, x_res = "default", t_res = "default")
pCSTM_TW(rt, resp, phi, x_res = "default", t_res = "default")
rCSTM_TW(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in your specified order |
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods, 1-21.
Custom Time- and Evidence-Dependent Drift Diffusion Model
Description
Density (PDF), distribution function (CDF), and random sampler for a custom time- and evidence-dependent (CSTM_TX) drift diffusion model.
Usage
dCSTM_TX(rt, resp, phi, x_res = "default", t_res = "default")
pCSTM_TX(rt, resp, phi, x_res = "default", t_res = "default")
rCSTM_TX(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in your specified order |
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods, 1-21.
Diffusion Model for Conflict Tasks
Description
The DMC is a two-process evidence accumulation model for the study of conflict tasks. It sums together a controlled and an automatic process to generate a single accumulator for generating the likelihood function. This accumulator has the same parameters as the SDDM with the exception of the drift rate, given by
v(x,t) = s*A*exp(-t/\tau)*[e*t/(\tau*(\alpha-1))]^{\alpha-1}*[(\alpha-1)/t - 1/\tau] + \mu_c.
Usage
dDMC(rt, resp, phi, x_res = "default", t_res = "default")
pDMC(rt, resp, phi, x_res = "default", t_res = "default")
rDMC(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive psychology, 78, 148-174.
Examples
# Probability density function
dDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0))
# Random sampling
rDMC(n = 100, phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0))
Exponential Threshold Model
Description
SDDM with thresholds that change with time. Thresholds are symmetric exponential functions
of the form b_u(t) = -b_l(t) = b_0*exp(-t/\tau)
.
Usage
dETM(rt, resp, phi, x_res = "default", t_res = "default")
pETM(rt, resp, phi, x_res = "default", t_res = "default")
rETM(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods, 56(3), 2636-2656.
Examples
# Probability density function
dETM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pETM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.5, 0.0, 0.0, 1.0))
# Random sampling
rETM(n = 100, phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.5, 0.0, 0.0, 1.0))
Leaky Integration Model
Description
SDDM modified to encode leaky integration in the drift rate. Also known as an
Ornstein-Uhlenbeck model, its drift rate is v(x,t) = \mu - L*x
where L
is the
leakage rate. All other parameters are unchanged from the SDDM. Leakage describes
the rate at which old information is lost from the accumulator, occurring on a
time scale of approximately 1/L
. The LIM is used to model decay of excitatory
currents in decision neurons (Usher & McClelland, 2001; Wong & Wang, 2006) and
has been proposed as a mechanism for preference reversals under time pressure
(Busemeyer & Townsend, 1993). Due to its neural plausibility and simple functional
form, recent work has proposed it as an alternative psychometric tool to the SDDM
(Wang & Donkin, 2024).
Usage
dLIM(rt, resp, phi, x_res = "default", t_res = "default")
pLIM(rt, resp, phi, x_res = "default", t_res = "default")
rLIM(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100(3), 432-459.
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550-592.
Wang, J.-S., & Donkin, C. (2024). The neural implausibility of the diffusion decision model doesn’t matter for cognitive psychometrics, but the Ornstein-Uhlenbeck model is better. Psychonomic Bulletin & Review.
Wong, K.-F., & Wang, X.-J. (2006). A Recurrent Network Mechanism of Time Integration in Perceptual Decisions. The Journal of Neuroscience, 26(4), 1314-1328.
Examples
# Probability density function
dLIM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 0.5, 1.0, 0.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pLIM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 0.5, 1.0, 0.5, 0.0, 0.0, 1.0))
# Random sampling
rLIM(n = 100, phi = c(0.3, 0.5, 1.0, 0.5, 1.0, 0.5, 0.0, 0.0, 1.0))
Leaky Integration Model With Flip
Description
LIM with time varying drift rate. Specifically, the stimulus strength changes from
\mu_1
to \mu_2
at time t_0
. Identified by (Evans et al., 2020; Trueblood et al., 2021)
as a way to improve recovery of the leakage rate. Drift rate becomes
v(x,t) = \mu_1 - L*x
if t < t_0
and v(x,t) = \mu_2 - L*x
if t >= t_0.
Usage
dLIMF(rt, resp, phi, x_res = "default", t_res = "default")
pLIMF(rt, resp, phi, x_res = "default", t_res = "default")
rLIMF(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Evans, N. J., Trueblood, J. S., & Holmes, W. R. (2019). A parameter recovery assessment of time-variant models of decision-making. Behavior Research Methods, 52(1), 193-206.
Trueblood, J. S., Heathcote, A., Evans, N. J., & Holmes, W. R. (2021). Urgency, leakage, and the relative nature of information processing in decision-making. Psychological Review, 128(1), 160-186.
Examples
# Probability density function
dLIMF(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 0.9, 0.5, 0.5, 1.0, 0.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pLIMF(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 0.9, 0.5, 0.5, 1.0, 0.5, 0.0, 0.0, 1.0))
# Random sampling
rLIMF(n = 100, phi = c(0.3, 0.5, 1.0, 0.9, 0.5, 0.5, 1.0, 0.5, 0.0, 0.0, 1.0))
Linear Threshold Model
Description
SDDM with thresholds that change with time. Thresholds are symmetric linear functions
of the form b_u(t) = -b_l(t) = b_0 - m*t
.
Usage
dLTM(rt, resp, phi, x_res = "default", t_res = "default")
pLTM(rt, resp, phi, x_res = "default", t_res = "default")
rLTM(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods, 56(3), 2636-2656.
Examples
# Probability density function
dLTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 1.0, 0.0, 0.0, 1.0))
# Cumulative distribution function
pLTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 1.0, 0.0, 0.0, 1.0))
# Random sampling
rLTM(n = 100, phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 1.0, 0.0, 0.0, 1.0))
Piecewise Attention Model
Description
The PAM (aka dual-process model) is an evidence accumulation model developed to study cognition in conflict tasks like the Eriksen flanker task. It is similar to the SSP, but instead of a gradual narrowing of attention, target selection is discrete. Its total drift rate is
v(x,t) = 2*a_{outer}*p_{outer} + 2*a_{inner}*p_{inner} + a_{target}*p_{target},
where a_{inner}
and a_{outter}
are 0 if t >= t_s
and 1 otherwise. The PAM
otherwise maintains the parameters of the SDDM.
Usage
dPAM(rt, resp, phi, x_res = "default", t_res = "default")
pPAM(rt, resp, phi, x_res = "default", t_res = "default")
rPAM(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 63(4), 210-238.
Examples
# Probability density function
dPAM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.25, 0.5, -0.3, -0.3, 0.3, 0.25, 1.0, 0.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pPAM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.25, 0.5, -0.3, -0.3, 0.3, 0.25, 1.0, 0.5, 0.0, 0.0, 1.0))
# Random sampling
rPAM(n = 100, phi = c(0.25, 0.5, -0.3, -0.3, 0.3, 0.25, 1.0, 0.5, 0.0, 0.0, 1.0))
Revised Diffusion Model of Conflict Tasks
Description
A DMC-like model which modifies the shape of the controlled and automatic processes
to ensure consistent stimulus representation across the task. It maintains all SDDM
parameters outside the drift rate which is v(x,t) = w_a(t)*d_a + w_c(t)*d_c
, where
w_a(t) = A_0*exp(-k*t)
and w_c(t) = 1 - w_a(t)
.
Usage
dRDMC(rt, resp, phi, x_res = "default", t_res = "default")
pRDMC(rt, resp, phi, x_res = "default", t_res = "default")
rRDMC(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Lee, P.-S., & Sewell, D. K. (2023). A revised diffusion model for conflict tasks. Psychonomic Bulletin & Review, 31(1), 1–31.
Examples
# Probability density function
dRDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.35, 0.5, 7.5, 40.0, 5.0, 5.0, 1.0, 0.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pRDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.35, 0.5, 7.5, 40.0, 5.0, 5.0, 1.0, 0.5, 0.0, 0.0, 1.0))
# Random sampling
rRDMC(n = 100, phi = c(0.35, 0.5, 7.5, 40.0, 5.0, 5.0, 1.0, 0.5, 0.0, 0.0, 1.0))
Rational Threshold Model
Description
SDDM with thresholds that change with time. Thresholds are rational functions of the form
b_u(t) = -b_l(t) = 0.5*b_0*(1 - \kappa*t/(t + t_{0.5})).
Usage
dRTM(rt, resp, phi, x_res = "default", t_res = "default")
pRTM(rt, resp, phi, x_res = "default", t_res = "default")
rRTM(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision-making with multiple alternatives. Nature Neuroscience, 11(6), 693-702.
Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E., & Shadlen, M. N. (2011). Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task. The Journal of Neuroscience, 31(17), 6339-6352.
Voskuilen, C., Ratcliff, R., & Smith, P. L. (2016). Comparing fixed and collapsing boundary versions of the diffusion model. Journal of Mathematical Psychology, 73, 59-79.
Examples
# Probability density function
dRTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.5, 0.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pRTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.5, 0.5, 0.0, 0.0, 1.0))
# Random sampling
rRTM(n = 100, phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.5, 0.5, 0.0, 0.0, 1.0))
Simple Drift Diffusion Model
Description
Density (PDF), distribution function (CDF), and random sampler for the simple drift diffusion model (SDDM) without across-trial variabilities.
Usage
dSDDM(rt, resp, phi, x_res = "default", t_res = "default")
pSDDM(rt, resp, phi, x_res = "default", t_res = "default")
rSDDM(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108.
Ratcliff, R., & McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks. Neural Computation, 20(4), 873-922.
Examples
# Probability density function
dSDDM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 0.75, 0.0, 0.0, 1.0))
# Cumulative distribution function
pSDDM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 0.75, 0.0, 0.0, 1.0))
# Random sampling
rSDDM(n = 100, phi = c(0.3, 0.5, 1.0, 1.0, 0.75, 0.0, 0.0, 1.0))
Sequential Dual Process Model
Description
The Sequential Dual Process Model (SDPM) is similar in principle to the DSTP, but instead
of simultaneous accumulators, it contains sequential accumulator s. Its drift rate is given by
v(x,t) = w(t)*\mu
where w(t)
is 0 if the second process hasn't crossed a
threshold yet and 1 if it has. The noise scale has a similar structure D(x,t) = w(t)*\sigma
.
Usage
dSDPM(rt, resp, phi, x_res = "default", t_res = "default")
pSDPM(rt, resp, phi, x_res = "default", t_res = "default")
rSDPM(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117(3), 759-784.
Examples
# Probability density function
dSDPM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 1.0, 0.5, 1.0, 1.0, 1.0, 1.0, 0.75, 0.75, 0.0, 0.0, 1.0))
# Cumulative distribution function
pSDPM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 1.0, 0.5, 1.0, 1.0, 1.0, 1.0, 0.75, 0.75, 0.0, 0.0, 1.0))
# Random sampling
rSDPM(n = 100, phi = c(0.3, 1.0, 0.5, 1.0, 1.0, 1.0, 1.0, 0.75, 0.75, 0.0, 0.0, 1.0),
dt = 0.001)
Shrinking Spotlight Model
Description
The SSP is an evidence accumulation model developed to study cognition in conflict tasks like the Eriksen flanker task. It is based on theories of visual attention and assumes that attention acts like a shrinking spotlight which is gradually narrowed on the target. It maintains all SDDM parameters outside of the drift rate. A full description of the model is in the REAM publication.
Usage
dSSP(rt, resp, phi, x_res = "default", t_res = "default")
pSSP(rt, resp, phi, x_res = "default", t_res = "default")
rSSP(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 63(4), 210–238.
Examples
# Probability density function
dSSP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 7.5, -1.0, -0.5, 0.5, 1.5, 3.75, 3.75, 3.75, 1.0,
0.75, 0.0, 0.0, 1.0))
# Cumulative distribution function
pSSP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 7.5, -1.0, -0.5, 0.5, 1.5, 3.75, 3.75, 3.75, 1.0,
0.75, 0.0, 0.0, 1.0))
# Random sampling
rSSP(n = 100, phi = c(0.3, 0.5, 1.0, 7.5, -1.0, -0.5, 0.5, 1.5, 3.75, 3.75, 3.75,
1.0, 0.75, 0.0, 0.0, 1.0))
Urgency Gating Model
Description
The Urgency Gating Model (UGM) is a decision-making model which proposes that stimulus information is first low pass filtered, then used to update the decision state through a time varying gain function (Cisek et al., 2009). Though not initially formulated as an EAM, following the procedure of (Trueblood et al., 2021) it can be written as one. Doing so modifies the drift rate to
v(x,t) = E_0*(1 + k*t) + (k/(1+k*t) - L)*x.
Usage
dUGM(rt, resp, phi, x_res = "default", t_res = "default")
pUGM(rt, resp, phi, x_res = "default", t_res = "default")
rUGM(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in changing conditions: the urgency-gating model. Journal of Neuroscience, 29(37), 11560-11571.
Trueblood, J. S., Heathcote, A., Evans, N. J., & Holmes, W. R. (2021). Urgency, leakage, and the relative nature of information processing in decision-making.
Examples
# Probability density function
dUGM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 0.5, 0.5, 1.0, 1.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pUGM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 0.5, 0.5, 1.0, 1.5, 0.0, 0.0, 1.0))
# Random sampling
rUGM(n = 100, phi = c(0.3, 0.5, 1.0, 0.5, 0.5, 1.0, 1.5, 0.0, 0.0, 1.0))
Urgency Gating Model With Flip
Description
UGM with time varying drift rate. Specifically, the stimulus strength changes from
E_{01}
to E_{02}
at time t_0
. Identified by (Trueblood et al., 2021) as
a way to improve recovery of the leakage rate and urgency. Drift rate becomes
v(x,t) = E_{01}*(1 + k*t) + (k/(1+k*t) - L)*x \ \text{ if } \ t < t_0
and
v(x,t) = E_{02}*(1 + k*t) + (k/(1+k*t) - L)*x \ \text{ if } \ t >= t_0.
Usage
dUGMF(rt, resp, phi, x_res = "default", t_res = "default")
pUGMF(rt, resp, phi, x_res = "default", t_res = "default")
rUGMF(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in changing conditions: the urgency-gating model. Journal of Neuroscience, 29(37), 11560-11571.
Trueblood, J. S., Heathcote, A., Evans, N. J., & Holmes, W. R. (2021). Urgency, leakage, and the relative nature of information processing in decision-making.
Examples
# Probability density function
dUGMF(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 0.9, 0.5, 0.5, 0.5, 1.0, 1.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pUGMF(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 0.9, 0.5, 0.5, 0.5, 1.0, 1.5, 0.0, 0.0, 1.0))
# Random sampling
rUGMF(n = 100, phi = c(0.3, 0.5, 1.0, 0.9, 0.5, 0.5, 0.5, 1.0, 1.5, 0.0, 0.0, 1.0))
Weibull Dual-Stage Two-Phase Model of Selective Attention
Description
A continuous approximation of the Dual-Stage Two-Phase model of conflict tasks. The Dual-Stage Two-Phase model assumes that choice in conflict tasks involves two processes: a decision process and a target selection process. Unlike the CDSTP, the target selection process here is a Weibull cumulative distribution function. The decision process is an SDDM but with drift rate
v(x,t) = (1 - w(t))*(\mu_t + c*\mu_{nt}) + w(t)*\mu_2,
where w(t) = 0
before target selection and w(t) = 1
after target selection.
A full derivation of this model is in the ream publication.
Usage
dWDSTP(rt, resp, phi, x_res = "default", t_res = "default")
pWDSTP(rt, resp, phi, x_res = "default", t_res = "default")
rWDSTP(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117(3), 759-784.
Examples
# Probability density function
dWDSTP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, -1.0, -0.5, 8.0, 1.0, 1.0, 1.0, 2.0, 1.3, 0.0, 0.0, 1.0))
# Cumulative distribution function
pWDSTP(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, -1.0, -0.5, 8.0, 1.0, 1.0, 1.0, 2.0, 1.3, 0.0, 0.0, 1.0))
# Random sampling
rWDSTP(n = 100, phi = c(0.3, 0.5, 1.0, 1.0, -1.0, -0.5, 8.0, 1.0, 1.0, 1.0, 2.0, 1.3,
0.0, 0.0, 1.0))
Weibull Threshold Model
Description
SDDM with thresholds that change with time. Thresholds are Weibull functions of the
form b_u(t) = -b_l(t) = b_0 - b_0*(1 – c)*[1 - exp(-(t/\lambda)^{\kappa})].
Usage
dWTM(rt, resp, phi, x_res = "default", t_res = "default")
pWTM(rt, resp, phi, x_res = "default", t_res = "default")
rWTM(n, phi, dt = 1e-05)
Arguments
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
Value
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Author(s)
Raphael Hartmann & Matthew Murrow
References
Hawkins, G. E., Forstmann, B. U., Wagenmakers, E.-J., Ratcliff, R., & Brown, S. D. (2015). Revisiting the Evidence for Collapsing Boundaries and Urgency Signals in Perceptual Decision-Making. The Journal of Neuroscience, 35(6), 2476-2484.
Palestro, J. J., Weichart, E., Sederberg, P. B., & Turner, B. M. (2018). Some task demands induce collapsing bounds: Evidence from a behavioral analysis. Psychonomic Bulletin & Review, 25(4), 1225-1248.
Examples
# Probability density function
dWTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.2, 0.5, -1.0, 0.0, 0.0, 1.0))
# Cumulative distribution function
pWTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.2, 0.5, -1.0, 0.0, 0.0, 1.0))
# Random sampling
rWTM(n = 100, phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.2, 0.5, -1.0, 0.0, 0.0, 1.0),
dt = 0.0001)
Generate Grid for PDF of the Continuous Dual-Stage Two-Phase Model of Selective Attention
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dCDSTP
.
Usage
dCDSTP_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological review, 117(3), 759.
Generate Grid for PDF of Custom Time- and Weight-Dependent Drift Diffusion Model
Description
Beschreibung.
Usage
dCSTM_TW_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in your order |
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
such and such
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods.
Generate Grid for PDF of Custom Time- and Evidence-Dependent Drift Diffusion Model
Description
Beschreibung.
Usage
dCSTM_TX_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in your order |
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
such and such
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods.
Generate Grid for PDF of Custom Time-Dependent Drift Diffusion Model
Description
Beschreibung.
Usage
dCSTM_T_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in your order |
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
such and such
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods.
Generate Grid for PDF of Diffusion Model of Conflict Tasks
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dDMC
.
Usage
dDMC_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive psychology, 78, 148-174.
Generate Grid for PDF of the Exponential Threshold Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dETM
.
Usage
dETM_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods, 56(3), 2636-2656.
Generate Grid for PDF of the Leaky Integration Model With Flip
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dLIMF
.
Usage
dLIMF_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Evans, N. J., Trueblood, J. S., & Holmes, W. R. (2019). A parameter recovery assessment of time-variant models of decision-making. Behavior Research Methods, 52(1), 193-206.
Trueblood, J. S., Heathcote, A., Evans, N. J., & Holmes, W. R. (2021). Urgency, leakage, and the relative nature of information processing in decision-making. Psychological Review, 128(1), 160-186.
Generate Grid for PDF of the Leaky Integration Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dLIM
.
Usage
dLIM_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100(3), 432-459.
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550-592.
Wang, J.-S., & Donkin, C. (2024). The neural implausibility of the diffusion decision model doesn’t matter for cognitive psychometrics, but the Ornstein-Uhlenbeck model is better. Psychonomic Bulletin & Review.
Wong, K.-F., & Wang, X.-J. (2006). A Recurrent Network Mechanism of Time Integration in Perceptual Decisions. The Journal of Neuroscience, 26(4), 1314-1328.
Generate Grid for PDF of the Linear Threshold Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dLTM
.
Usage
dLTM_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Murrow, M., & Holmes, W. R. (2023). PyBEAM: A Bayesian approach to parameter inference for a wide class of binary evidence accumulation models. Behavior Research Methods, 56(3), 2636-2656.
Generate Grid for PDF of Piecewise Attention Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dPAM
.
Usage
dPAM_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 63(4), 210-238.
Generate Grid for PDF of the Revised Diffusion Model of Conflict Tasks
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dRDMC
.
Usage
dRDMC_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Lee, P.-S., & Sewell, D. K. (2023). A revised diffusion model for conflict tasks. Psychonomic Bulletin & Review, 31(1), 1–31.
Generate Grid for PDF of the Rational Threshold Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dRTM
.
Usage
dRTM_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision-making with multiple alternatives. Nature Neuroscience, 11(6), 693-702.
Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E., & Shadlen, M. N. (2011). Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task. The Journal of Neuroscience, 31(17), 6339-6352.
Voskuilen, C., Ratcliff, R., & Smith, P. L. (2016). Comparing fixed and collapsing boundary versions of the diffusion model. Journal of Mathematical Psychology, 73, 59-79.
Generate Grid for PDF of the Simple Drift Diffusion Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dSDDM
.
Usage
dSDDM_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108.
Ratcliff, R., & McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks. Neural Computation, 20(4), 873-922.
Generate Grid for PDF of the Sequential Dual Process Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dSDPM
.
Usage
dSDPM_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117(3), 759-784.
Generate Grid for PDF of the Shrinking Spotlight Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dSSP
.
Usage
dSSP_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 63(4), 210–238.
Generate Grid for PDF of the Urgency Gating Model With Flip
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dUGMF
.
Usage
dUGMF_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in changing conditions: the urgency-gating model. Journal of Neuroscience, 29(37), 11560-11571.
Trueblood, J. S., Heathcote, A., Evans, N. J., & Holmes, W. R. (2021). Urgency, leakage, and the relative nature of information processing in decision-making.
Generate Grid for PDF of the Urgency Gating Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dUGM
.
Usage
dUGM_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in changing conditions: the urgency-gating model. Journal of Neuroscience, 29(37), 11560-11571.
Trueblood, J. S., Heathcote, A., Evans, N. J., & Holmes, W. R. (2021). Urgency, leakage, and the relative nature of information processing in decision-making. Psychological Review, 128(1), 160-186.
Generate Grid for PDF of the Weibull Dual-Stage Two-Phase Model of Selective Attention
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dWDSTP
.
Usage
dWDSTP_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117(3), 759-784.
Generate Grid for PDF of the Weibull Threshold Model
Description
Generate a grid of response-time values and the corresponding PDF values.
For more details on the model see, for example, dWTM
.
Usage
dWTM_grid(rt_max = 10, phi, x_res = "default", t_res = "default")
Arguments
rt_max |
maximal response time <- max(rt) |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
Value
list of RTs and corresponding defective PDFs at lower and upper threshold
Author(s)
Raphael Hartmann & Matthew Murrow
References
Hawkins, G. E., Forstmann, B. U., Wagenmakers, E.-J., Ratcliff, R., & Brown, S. D. (2015). Revisiting the Evidence for Collapsing Boundaries and Urgency Signals in Perceptual Decision-Making. The Journal of Neuroscience, 35(6), 2476-2484.
Palestro, J. J., Weichart, E., Sederberg, P. B., & Turner, B. M. (2018). Some task demands induce collapsing bounds: Evidence from a behavioral analysis. Psychonomic Bulletin & Review, 25(4), 1225-1248.