## ---- include = FALSE--------------------------------------------------------- NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "true") # nolint knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = NOT_CRAN ) ## ---- eval = FALSE------------------------------------------------------------ # install.packages("rbi.helpers") ## ---- eval = FALSE------------------------------------------------------------ # remotes::install_github("sbfnk/rbi.helpers") ## ---- eval = FALSE------------------------------------------------------------ # library("rbi") # library("rbi.helpers") ## ---- echo = FALSE------------------------------------------------------------ # suppressPackageStartupMessages(library("rbi")) # suppressPackageStartupMessages(library("rbi.helpers")) ## ---- eval = NOT_CRAN--------------------------------------------------------- # model_file <- system.file(package = "rbi", "SIR.bi") # file included in package # sir_model <- bi_model(model_file) # load model # set.seed(1001912) # sir_data <- bi_generate_dataset(sir_model, end_time = 16 * 7, noutputs = 16) ## ----------------------------------------------------------------------------- # bi_prior <- sample( # proposal = "prior", sir_model, nsamples = 1000, end_time = 16 * 7, # nparticles = 4, obs = sir_data, seed = 1234 # ) ## ----------------------------------------------------------------------------- # adapted <- adapt_particles(bi_prior) ## ----------------------------------------------------------------------------- # adapted$options$nparticles ## ----------------------------------------------------------------------------- # adapted <- adapt_proposal(adapted, min = 0.05, max = 0.4) ## ----------------------------------------------------------------------------- # bi_read(adapted, file = "input") ## ----------------------------------------------------------------------------- # posterior <- sample(adapted) # DIC(posterior) ## ----------------------------------------------------------------------------- # res <- numeric_to_time(posterior, unit = "day", origin = as.Date("2018-04-01")) # head(res$Z) ## ----------------------------------------------------------------------------- # orig <- time_to_numeric(res, unit = "day", origin = as.Date("2018-04-01")) # head(orig$Z) ## ----------------------------------------------------------------------------- # posterior <- sample( # proposal = "prior", sir_model, nsamples = 1000, # end_time = 16 * 7, nparticles = 4, obs = sir_data, seed = 1234 # ) |> # adapt_particles() |> # adapt_proposal(min = 0.05, max = 0.4) |> # sample(nsamples = 5000) |> # sample_obs()