## ----------------------------------------------------------------------------- ## Load the package library( ratematrix ) ## Load the data data( "centrarchidae" ) ## A list with data, phy.map, and pred names( centrarchidae ) ## ----------------------------------------------------------------------------- resp.data <- centrarchidae$data class( resp.data ) head( resp.data ) ## ----------------------------------------------------------------------------- pred.data <- centrarchidae$pred names( pred.data ) ## Table show the distribution of the data for the predictor regime. table( pred.data ) ## ----------------------------------------------------------------------------- phy <- centrarchidae$phy.map ## Drop the regimes of the stochastic map. phy <- mergeSimmap(phy, drop.regimes = TRUE) ## ---- echo=FALSE-------------------------------------------------------------- load( system.file("extdata", "intro_vignette.RData", package = "ratematrix") ) ## ---- eval=FALSE-------------------------------------------------------------- # handle <- ratematrixJointMCMC(data_BM = resp.data, data_Mk = pred.data, phy = phy # , gen = 100000, dir = tempdir()) # mcmc <- readMCMC(handle) ## ----------------------------------------------------------------------------- plotRatematrix(mcmc) ## ---- eval=FALSE-------------------------------------------------------------- # handle2 <- ratematrixJointMCMC(data_BM = resp.data, data_Mk = pred.data, phy = phy # , gen = 100000, dir = tempdir()) # mcmc2 <- readMCMC(handle2) ## ----------------------------------------------------------------------------- Rfactor <- checkConvergence(mcmc, mcmc2) Rfactor ## ----------------------------------------------------------------------------- merged.mcmc <- mergePosterior(mcmc, mcmc2) ## ----------------------------------------------------------------------------- corr <- extractCorrelation(merged.mcmc) dim( corr ) ## 1500 samples and 2 regimes. head( corr ) ## ----------------------------------------------------------------------------- hist(x = corr[,1], xlim = c(-1,1), main = "Generalist", col = "grey" , border = "white", breaks = 20, freq = FALSE) hist(x = corr[,2], xlim = c(-1,1), main = "Specialist", col = "grey" , border = "white", breaks = 20, freq = FALSE) ## ----------------------------------------------------------------------------- boxplot(x = corr) ## ----------------------------------------------------------------------------- testRatematrix(chain = merged.mcmc, par = "rates") ## ----------------------------------------------------------------------------- testRatematrix(chain = merged.mcmc, par = "correlation") ## ----------------------------------------------------------------------------- names( merged.mcmc ) head( merged.mcmc$root ) ## ----------------------------------------------------------------------------- names( merged.mcmc$matrix ) class( merged.mcmc$matrix$generalist ) length( merged.mcmc$matrix$generalist ) gen.rate <- merged.mcmc$matrix$generalist spec.rate <- merged.mcmc$matrix$specialist ## The first element of the list: gen.rate[[1]] spec.rate[[1]] ## ----------------------------------------------------------------------------- ## Extracts the rates for the first trait from the posterior distribution of generalists. rate.tr1.gen <- sapply(gen.rate, function(x) x[1,1]) summary( rate.tr1.gen )