Type: | Package |
Title: | Fundamental Formulas for Radar |
Version: | 1.0.0 |
Encoding: | UTF-8 |
Description: | Fundamental formulas for Radar, for attenuation, range, velocity, effectiveness, power, scatter, doppler, geometry, radar equations, etc. Based on Nick Guy's Python package PyRadarMet |
License: | GPL (≥ 3) |
Depends: | R (≥ 2.7.0) |
Packaged: | 2014-12-02 15:31:46.027 UTC; poky |
Author: | Jose' Gama [aut, cre], Nick Guy [aut] |
Maintainer: | Jose' Gama <rxprtgama@gmail.com> |
NeedsCompilation: | no |
Repository: | CRAN |
Date/Publication: | 2014-12-02 17:04:26 |
Antenna Characteristics for Aperture Weighting Functions
Description
ApertureWeightingFunctionsAntenna
has Antenna Characteristics for
Aperture Weighting Functions
Usage
ApertureWeightingFunctionsAntenna
Author(s)
Jose Gama
Source
G. Richard Curry, 2011 SciTech Publishing Radar Essentials, A Concise Handbook for Radar Design and Performance Analysis
References
G. Richard Curry, 2011 SciTech Publishing Radar Essentials, A Concise Handbook for Radar Design and Performance Analysis
Examples
data(ApertureWeightingFunctionsAntenna)
str(ApertureWeightingFunctionsAntenna)
Absorption coefficient of a spherical particle
Description
AttenuationAbsCoeff
Absorption coefficient of a spherical
particle. From Doviak and Zrnic (1993), Eqn 3.14a or Battan (1973), Eqn 6.6
Usage
AttenuationAbsCoeff(D, lam, m)
Arguments
D |
Particle diameter (m) |
lam |
Radar wavelength (m) |
m |
Complex refractive index (unitless) |
Value
Qa |
Absorption coefficient [unitless] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Doviak, R.J. and Zrnic, D.S., 1993 Doppler radar and weather observations, Academic Press
Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press
Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press
Extinction coefficient of a spherical particle
Description
AttenuationExtCoeff
Extinction coefficient of a spherical
particle. From Doviak and Zrnic (1993), Eqn 3.14a or Battan (1973), Eqn 6.5
Usage
AttenuationExtCoeff(D, lam, m)
Arguments
D |
Particle diameter (m) |
lam |
Radar wavelength (m) |
m |
Complex refractive index (unitless) |
Value
Qe |
Extinction coefficient [unitless] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Doviak, R.J. and Zrnic, D.S., 1993 Doppler radar and weather observations, Academic Press
Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press
Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press
Scattering coefficient of a spherical particle
Description
AttenuationScatCoeff
Scattering coefficient of a spherical
particle. From Doviak and Zrnic (1993), Eqn 3.14a or Battan (1973), Eqn 6.5
Usage
AttenuationScatCoeff(D, lam, m)
Arguments
D |
Particle diameter (m) |
lam |
Radar wavelength (m) |
m |
Complex refractive index (unitless) |
Value
Qs |
Scattering coefficient [unitless] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Doviak, R.J. and Zrnic, D.S., 1993 Doppler radar and weather observations, Academic Press
Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press
Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press
Conversion from linear Z units to dBZ (log) units
Description
ConversionZ2dBZ
Converts from linear Z units
to dBZ (log) units
Usage
ConversionZ2dBZ(Zlin)
Arguments
Zlin |
linear reflectivity units |
Value
dBZ |
logarithmic reflectivity value |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Conversion from dBZ (log) units to linear Z units
Description
ConversiondBZ2Z
Converts from dBZ (log) units
to linear Z units
Usage
ConversiondBZ2Z(dBZ)
Arguments
dBZ |
logarithmic reflectivity value |
Value
Z |
linear reflectivity units |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Doppler dilemma
Description
DopplerDilemma
returns the Doppler dilemma
From Rinehart (1997), Eqn 6.12
Usage
DopplerDilemma(inFloat, lam, speedOfLight)
Arguments
inFloat |
Nyquist Velocity [m/s] or Maximum unambiguous range [m] |
lam |
Radar wavelength [m] |
speedOfLight |
speed of light |
Value
Rmax |
Maximum unambiguous range [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Maximum frequency given PRF
Description
DopplerFmax
returns the PRF for a maximum frequency
From Rinehart (1997), Eqn 6.8
Usage
DopplerFmax(PRF)
Arguments
PRF |
Pulse repetition frequency [Hz] |
Value
f |
Maximum frequency [Hz] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Frequency given wavelength
Description
DopplerFreq
Converts from wavelength to frequency
Usage
DopplerFreq(lam, speedOfLight)
Arguments
lam |
Wavelength [m] |
speedOfLight |
speed of light |
Value
f |
Frequency [Hz] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Pulse duration from pulse length
Description
DopplerPulseDuration
Converts from pulse length to pulse duration
Usage
DopplerPulseDuration(tau, speedOfLight)
Arguments
tau |
Pulse length [m] |
speedOfLight |
speed of light |
Value
pDur |
Pulse duration [s] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Pulse length from pulse duration
Description
DopplerPulseLength
Converts from pulse duration to pulse length
Usage
DopplerPulseLength(pDur, speedOfLight)
Arguments
pDur |
Pulse duration [s] |
speedOfLight |
speed of light |
Value
tau |
Pulse length [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Maximum unamiguous range
Description
DopplerRmax
returns the maximum unamiguous range
From Rinehart (1997), Eqn 6.11
Usage
DopplerRmax(PRF, speedOfLight)
Arguments
PRF |
Pulse repetition frequency [Hz] |
speedOfLight |
speed of light |
Value
Rmax |
Maximum unambiguous range [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Nyquist velocity, or maximum unambiguous Doppler velocity (+ or -)
Description
DopplerVmax
returns the Nyquist velocity, or maximum
unambiguous Doppler velocity (+ or -). From Rinehart (1997), Eqn 6.8
Usage
DopplerVmax(PRF, lam)
Arguments
PRF |
Pulse repetition frequency [Hz] |
lam |
Radar wavelength [m] |
Value
Vmax |
Nyquist velocity [m/s], +/- |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Doppler velocity from dual PRF scheme radar (+ or -)
Description
DopplerVmaxDual
returns Doppler velocity [m/s]
from a mobile platform. From Jorgensen (1983), Eqn 2
Usage
DopplerVmaxDual(lam, PRF1, PRF2)
Arguments
lam |
Radar wavelength [m] |
PRF1 |
First Pulse repetition frequency [Hz] |
PRF2 |
Second Pulse repetition frequency [Hz] |
Value
Vmax |
Doppler velocity [m/s] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Jorgensen, D., Hildebrand, P.H., and Frush, C., 1983 Feasibility test of an airborne pulse-Doppler meteorological Radar J. Clim. Appl. Meteorol
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Jorgensen, D., Hildebrand, P.H., and Frush, C., 1983 Feasibility test of an airborne pulse-Doppler meteorological Radar J. Clim. Appl. Meteorol
Adjusted Doppler velocity from a mobile platform
Description
DopplerVshift
returns Adjusted Doppler velocity
from a mobile platform. From Jorgensen (1983), Eqn 2
Usage
DopplerVshift(GS, psi)
Arguments
GS |
Gound speed [m/s] |
psi |
Angle between actual azimuth and fore/aft angle [deg] |
Value
Vshift |
Shift in Doppler velocity from mobile aspect [m/s] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Jorgensen, D., Hildebrand, P.H., and Frush, C., 1983 Feasibility test of an airborne pulse-Doppler meteorological Radar J. Clim. Appl. Meteorol
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Jorgensen, D., Hildebrand, P.H., and Frush, C., 1983 Feasibility test of an airborne pulse-Doppler meteorological Radar J. Clim. Appl. Meteorol
Wavelength given frequency
Description
DopplerWavelength
Converts from frequency to wavelength
Usage
DopplerWavelength(freq, speedOfLight)
Arguments
freq |
Frequency [Hz] |
speedOfLight |
speed of light |
Value
lam |
Wavelength [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Electronic Warfare Frequency Bands
Description
ElectronicWarfareFrequencyBands
has Electronic Warfare Frequency Bands
Usage
ElectronicWarfareFrequencyBands
Author(s)
Jose Gama
Source
G. Richard Curry, 2011 SciTech Publishing Radar Essentials, A Concise Handbook for Radar Design and Performance Analysis
References
G. Richard Curry, 2011 SciTech Publishing Radar Essentials, A Concise Handbook for Radar Design and Performance Analysis
Examples
data(ElectronicWarfareFrequencyBands)
str(ElectronicWarfareFrequencyBands)
Partial beam blockage fraction
Description
GeometryBeamBlockFrac
returns the partial beam blockage fraction
From Bech et al. (2003), Eqn 2 and Appendix
Usage
GeometryBeamBlockFrac(Th, Bh, a)
Arguments
Th |
Terrain height [m] |
Bh |
Beam height [m] |
a |
Half power beam radius [m] |
Value
PBB |
Partial beam blockage fraction [unitless] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Bech et al, 2003 The Sensitivity of Single Polarization Weather Radar Beam Blockage Correction to Variability in the Vertical Refractivity Gradient American Meteorological Society, AMS journals Volume 20 Issue 6
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Bech et al, 2003 The Sensitivity of Single Polarization Weather Radar Beam Blockage Correction to Variability in the Vertical Refractivity Gradient American Meteorological Society, AMS journals Volume 20 Issue 6
Half-power radius
Description
GeometryHalfPowerRadius
returns the half-power radius
Battan (1973)
Usage
GeometryHalfPowerRadius(r, bwhalf)
Arguments
r |
Range [m] |
bwhalf |
Half-power beam width [degrees] |
Value
Rhalf |
Half-power radius [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press
Half-power radius
Description
GeometryRangeCorrect
returns the half-power radius
From CSU Radar Meteorology AT 741 Notes
Usage
GeometryRangeCorrect(r, h, E)
Arguments
r |
Distance to sample volume from radar [m] |
h |
Height of the center of radar volume [m] |
E |
Elevation angle [deg] |
Value
rnew |
Adjusted range to sample volume [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
CSU Radar Meteorology AT 741 Notes
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
CSU Radar Meteorology AT 741 Notes
Center of radar beam height calculation
Description
GeometryRayHeight
returns the center of radar beam height
From Rinehart (1997), Eqn 3.12, Bech et al. (2003) Eqn 3
Usage
GeometryRayHeight(r, elev, H0, R1=kConstantR43)
Arguments
r |
Range from radar to point of interest [m] |
elev |
Elevation angle of radar beam [deg] |
H0 |
Height of radar antenna [m] |
R1 |
Effective radius [m] |
Value
h |
Radar beam height [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Effective radius calculation
Description
GeometryReffective
returns the effective radius
From Rinehart (1997), Eqn 3.9, solved for R'
Usage
GeometryReffective(dNdH=-39e-6, earthRadius)
Arguments
dNdH |
Refraction [N x10^-6/km] |
earthRadius |
earth radius [m] |
Value
R |
Effective radius [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Sample volume assuming transmitted energy in Gaussian beam shape
Description
GeometrySampleVolGauss
returns the sample volume assuming
transmitted energy in Gaussian beam shape.
From Rinehart (1997), Eqn 5.4
Usage
GeometrySampleVolGauss(r, bwH, bwV, pLength)
Arguments
r |
Range from radar to point of interest [m] |
bwH |
Horizontal beamwidth [deg] |
bwV |
Vertical beamwidth deg] |
pLength |
Pulse length [m] |
Value
sVol |
Sample Volume [m^3] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Sample volume (idealized) assuming all power in half-power beamwidths
Description
GeometrySampleVolIdeal
returns the sample volume (idealized)
From Rinehart (1997), Eqn 5.2
Usage
GeometrySampleVolIdeal(r, bwH, bwV, pLength)
Arguments
r |
Range from radar to point of interest [m] |
bwH |
Horizontal beamwidth [deg] |
bwV |
Vertical beamwidth deg] |
pLength |
Pulse length [m] |
Value
sVol |
Sample Volume [m^3] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Antenna effective area
Description
SystemAntEffArea
returns the antenna effective area
From Rinehart (1997), Eqn 4.5
Usage
SystemAntEffArea(G, lam)
Arguments
G |
Antenna Gain [dB] |
lam |
Radar wavelength [m] |
Value
Ae |
Antenna effective area [unitless] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Frequency given wavelength
Description
SystemFreq
Converts from wavelength to frequency
Usage
SystemFreq(lam, speedOfLight)
Arguments
lam |
Wavelength [m] |
speedOfLight |
speed of light |
Value
f |
Frequency [Hz] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Antenna gain via power ratio
Description
SystemGainPratio
returns the antenna gain via power ratio
From Rinehart (1997), Eqn 2.1
Usage
SystemGainPratio(P1, P2)
Arguments
P1 |
Power on the beam axis [W] |
P2 |
Power from an isotropic antenna [W] |
Value
G |
Gain [dB] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Normalized Backscatter cross-sectional area of a sphere using the Rayleigh approximation
Description
SystemNormXsecBscatterSphere
returns the normalized Backscatter cross-sectional
area of a sphere using the Rayleigh approximation
From Rinehart (1997), Eqn 4.9 and 5.7 and Battan Ch. 4.5
Usage
SystemNormXsecBscatterSphere(D, lam, K=0.93)
Arguments
D |
Diameter of target [m] |
lam |
Radar wavelength [m] |
K |
Dielectric factor [unitless] |
Value
sigNorm |
Normalized backscatter cross-section [unitless] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press
Power returned by target located at the center of the antenna beam pattern
Description
SystemPowerReturnTarget
returns Power returned by target located
at the center of the antenna beam pattern
From Rinehart (1997), Eqn 4.7
Usage
SystemPowerReturnTarget(Pt, G, lam, sig, r)
Arguments
Pt |
Transmitted power [W] |
G |
Antenna gain [dB] |
lam |
Radar wavelength [m] |
sig |
Backscattering cross-sectional area of target [m^2] |
r |
Distance to sample volume from radar [m] |
Value
Pr |
Power returned by target [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Power intercepted by target
Description
SystemPowerTarget
returns the power intercepted by target
From Rinehart (1997), Eqn 4.3
Usage
SystemPowerTarget(Pt, G, Asig, r)
Arguments
Pt |
Transmitted power [W] |
G |
Antenna gain [dB] |
Asig |
Area of target [m^2] |
r |
Distance to sample volume from radar [m] |
Value
Psig |
Power intecepted by target [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Radar constant
Description
SystemRadarConst
returns radar constant
From CSU Radar Meteorology notes, AT 741
Usage
SystemRadarConst(Pt, G, Tau, lam, bwH, bwV, Lm, Lr)
Arguments
Pt |
Transmitted power [W] |
G |
Antenna gain [dB] |
Tau |
Pulse Width [s] |
lam |
Radar wavelength [m] |
bwH |
Horizontalntenna beamwidth [degrees] |
bwV |
Vertical antenna beamwidth [degrees] |
Lm |
Antenna/waveguide/coupler loss [dB] |
Lr |
Receiver loss [dB] |
Value
C |
Radar constant [unitless] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
CSU Radar Meteorology notes, AT 741
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
CSU Radar Meteorology notes, AT 741
Size parameter calculation
Description
SystemSizeParam
returns the size parameter calculation
From Rinehart (1997), Eqn 4.9 and 5.7 and Battan Ch. 4.5
Usage
SystemSizeParam(D, lam)
Arguments
D |
Diameter of target [m] |
lam |
Radar wavelength [m] |
Value
alpha |
Size parameter [unitless] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press
Thermal noise power
Description
SystemThermalNoise
returns the thermal noise power
From CSU Radar Meteorology notes, AT741
Usage
SystemThermalNoise(Bn, Units, Ts=290, k=kConstantBoltz)
Arguments
Bn |
Receiver bandwidth [Hz] |
Units |
String of nits desired, can be 'W' or 'dBm' |
Ts |
Reciever noise temperature [K] |
k |
Boltzmann's constant |
Value
nt |
Thermal noise power [W or 'dBm'] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
CSU Radar Meteorology notes, AT741
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
CSU Radar Meteorology notes, AT741
Backscatter cross-sectional area of a sphere using the Rayleigh approximation
Description
SystemXsecBscatterSphere
returns Backscatter cross-sectional
area of a sphere using the Rayleigh approximation
From Rinehart (1997), Eqn 4.9 and 5.7
Usage
SystemXsecBscatterSphere(D, lam, K=0.93)
Arguments
D |
Diameter of target [m] |
lam |
Radar wavelength [m] |
K |
Dielectric factor [unitless] |
Value
sig |
Backscattering cross-section [m*2] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Wavelength given frequency
Description
Systemwavelength
Converts from frequency to wavelength
Usage
Systemwavelength(freq, speedOfLight)
Arguments
freq |
Frequency [Hz] |
speedOfLight |
speed of light |
Value
lam |
Wavelength [m] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Circular depolarization ratio
Description
VariablesCDR
returns the circular depolarization ratio
From Rinehart (1997), Eqn 10.2
Usage
VariablesCDR(Zpar, Zorth)
Arguments
Zpar |
Reflectivity in the parallel channel [mm^6/m^3] |
Zorth |
Reflectivity in the orthogonal channel [mm^6/m^3] |
Value
CDR |
Circular depolarization ratio [dB] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Differential reflectivity hail signature
Description
VariablesHDR
returns the differential reflectivity hail signature
From Aydin et al. (1986), Eqns 4-5
Usage
VariablesHDR(dBZh, ZDR)
Arguments
dBZh |
Horizontal reflectivity [dBZ] |
ZDR |
Differential reflectivity [dBZ] |
Value
ZDP |
Reflectivity difference [dB] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Aydin et al., 1986
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
Linear depolarization ratio
Description
VariablesLDR
returns the linear depolarization ratio
From Rinehart (1997), Eqn 10.3
Usage
VariablesLDR(Zh, Zv)
Arguments
Zh |
Horizontal reflectivity [mm^6/m^3] |
Zv |
Vertical reflectivity [mm^6/m^3] |
Value
LDR |
linear depolarization ratio |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Radial velocity
Description
VariablesRadVel
returns the radial velocity
From Rinehart (1993), Eqn 6.6
Usage
VariablesRadVel(f,lam)
Arguments
f |
Frequency shift [Hz] |
lam |
Radar wavelength [m] |
Value
Vr |
Radial velocity [m/s] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Radar reflectivity
Description
VariablesReflectivity
returns the radar reflectivity
From Rinehart (1993), Eqn 5.17 (See Eqn 5.14-5.16 also)
Usage
VariablesReflectivity(Pt, G, Tau, lam, bwH, bwV, Lm, Lr, Pr, r, K=0.93)
Arguments
Pt |
Transmitted power [W] |
G |
Antenna gain [dB] |
Tau |
Pulse Width [s] |
lam |
Radar wavelength [m] |
bwH |
Horizontalntenna beamwidth [degrees] |
bwV |
Vertical antenna beamwidth [degrees] |
Lm |
Antenna/waveguide/coupler loss [dB] |
Lr |
Receiver loss [dB] |
Pr |
Returned power [W] |
r |
Range to target [m] |
K |
Dielectric factor [unitless] |
Value
Ze |
Radar reflectivity [unitless] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Reflectivity difference
Description
VariablesZDP
returns the reflectivity difference
From Rinehart (1997), Eqn 10.2
Usage
VariablesZDP(Zh, Zv)
Arguments
Zh |
Horizontal reflectivity [mm^6/m^3] |
Zv |
Vertical reflectivity [mm^6/m^3] |
Value
ZDP |
Reflectivity difference [dB] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Differential reflectivity
Description
VariablesZDR
returns the differential reflectivity
From Rinehart (1997), Eqn 10.3 and Seliga and Bringi (1976)
Usage
VariablesZDR(Zh, Zv)
Arguments
Zh |
Horizontal reflectivity [mm^6/m^3] |
Zv |
Vertical reflectivity [mm^6/m^3] |
Value
ZDR |
Differential reflectivity [dB] |
Author(s)
Jose Gama
Source
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
References
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
Constant speed of light
Description
kConstantSpeedOfLight
is "c" the constant speed of light [m/s].
kConstantSLP
Sea-level Pressure [hPa].
kConstantP0
Reference pressure [hPa].
kConstantRe
Earth's radius [m].
kConstantR43
4/3 Approximation effective radius for standard atmosphere [m].
kConstantBoltz
Boltzmann's constant [ m^2 kg s^-2 K^-1].
Usage
kConstantSpeedOfLight
Author(s)
Jose Gama
Examples
print(kConstantSpeedOfLight)