## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, fig.width = 4, fig.height = 4, comment = "#>" ) ## ----input-------------------------------------------------------------------- colkas <- qtl::read.cross(format="csvs",dir="../inst", genfile="ColKas_geno.csv", phefile = "ColKas_pheno.csv", na.strings = c("_"), estimate.map=TRUE, crosstype = "riself" ) colkas_genoprob <- qtl::calc.genoprob(colkas, step=2) ## ----pve---------------------------------------------------------------------- library(rNeighborQTL) x <- colkas$pheno[,2] y <- colkas$pheno[,3] smap_colkas <- data.frame(x,y) s_seq <- quantile(dist(smap_colkas),c(0.1*(1:10))) colkas_pve <- calc_pve(genoprobs=colkas_genoprob, pheno=log(colkas$pheno[,5]+1), smap=smap_colkas, s_seq=s_seq, addcovar=as.matrix(colkas$pheno[,7:9]) ) ## ----eff, fig.width=4, fig.height=8------------------------------------------- colkas_eff <- eff_neighbor(genoprobs=colkas_genoprob, pheno=log(colkas$pheno[,5]+1), smap=smap_colkas, scale=7, addcovar=as.matrix(colkas$pheno[,7:9]) ) ## ----LOD---------------------------------------------------------------------- colkas_scan <- scan_neighbor(genoprobs=colkas_genoprob, pheno=log(colkas$pheno[,5]+1), smap=smap_colkas, scale=7, addcovar=as.matrix(colkas$pheno[,7:9]) ) plot_nei(colkas_scan) ## ----perm, eval=FALSE--------------------------------------------------------- # colkas_perm <- perm_neighbor(genoprobs=colkas_genoprob, # pheno=log(colkas$pheno[,5]+1), # smap=smap_colkas, scale=7, # addcovar=as.matrix(colkas$pheno[,6:8]), # times=3, p_val=c(0.5,0.1) # ) ## ----self--------------------------------------------------------------------- plot_nei(colkas_scan, type="self") colkas_scanone <- qtl::scanone(colkas_genoprob, pheno.col=log(colkas$pheno$holes+1), addcovar=as.matrix(colkas$pheno[,7:9]), method="hk") plot(colkas_scanone) ## ----CIM, eval=FALSE---------------------------------------------------------- # colkas_cim <- scan_neighbor(genoprobs=colkas_genoprob, # pheno=log(colkas$pheno[,5]+1), # smap=smap_colkas, scale=7, # addcovar=as.matrix(colkas$pheno[,7:9]), # addQTL="c4_nga8" # ) # plot_nei(colkas_cim) ## ----int, eval=FALSE---------------------------------------------------------- # colkas_int <- int_neighbor(genoprobs=colkas_genoprob, # pheno=log(colkas$pheno[,5]+1), # smap=smap_colkas, scale=7, # addcovar=as.matrix(colkas$pheno[,7:9]), # addQTL="c4_nga8", intQTL="c4_nga8" # ) # # plot_nei(colkas_int, type="int") ## ----bin---------------------------------------------------------------------- s_seq <- quantile(dist(smap_colkas),c(0.1*(1:10))) colkas_pveBin <- calc_pve(genoprobs=colkas_genoprob, pheno=colkas$pheno[,7], smap=smap_colkas, s_seq=s_seq, response="binary", addcovar=as.matrix(colkas$pheno[,8:9]), fig=TRUE) colkas_scanBin <- scan_neighbor(genoprobs=colkas_genoprob, pheno=colkas$pheno[,7], smap=smap_colkas, scale=2.24, addcovar=as.matrix(colkas$pheno[,8:9]), response="binary") plot_nei(colkas_scanBin) ## ----fake--------------------------------------------------------------------- #F2 lines set.seed(1234) data("fake.f2",package="qtl") fake_f2 <- subset(fake.f2, chr=1:19) smap_f2 <- cbind(runif(qtl::nind(fake_f2),1,100),runif(qtl::nind(fake_f2),1,100)) genoprobs_f2 <- qtl::calc.genoprob(fake_f2,step=2) s_seq <- quantile(dist(smap_f2),c(0.1*(1:10))) nei_eff <- sim_nei_qtl(genoprobs_f2, a2=0.5, d2=0.5, smap=smap_f2, scale=s_seq[1], n_QTL=1 ) pve_f2 <- calc_pve(genoprobs=genoprobs_f2, pheno=nei_eff$nei_y, smap=smap_f2, s_seq=s_seq[1:5], addcovar=as.matrix(cbind(fake_f2$pheno$sex,fake_f2$pheno$pgm)), fig=FALSE) deltaPVE <- pve_f2[-1,3] - c(0,pve_f2[1:4,3]) argmax_s <- s_seq[1:5][deltaPVE==max(deltaPVE)] scan_f2 <- scan_neighbor(genoprobs=genoprobs_f2, pheno=nei_eff$nei_y, smap=smap_f2, scale=argmax_s, addcovar=as.matrix(cbind(fake_f2$pheno$sex,fake_f2$pheno$pgm)) ) plot_nei(scan_f2) ## ----bc----------------------------------------------------------------------- #backcross lines set.seed(1234) data("fake.bc",package="qtl") fake_bc <- subset(fake.bc, chr=1:19) smap_bc <- cbind(runif(qtl::nind(fake_bc),1,100),runif(qtl::nind(fake_bc),1,100)) genoprobs_bc <- qtl::calc.genoprob(fake_bc,step=2) s_seq <- quantile(dist(smap_bc),c(0.1*(1:10))) nei_eff <- sim_nei_qtl(genoprobs_bc, a2=0.3, d2=-0.3, smap=smap_bc, scale=s_seq[1], n_QTL=1) pve_bc <- calc_pve(genoprobs=genoprobs_bc, pheno=nei_eff$nei_y, smap=smap_bc, s_seq=s_seq[1:5], addcovar=as.matrix(cbind(fake_bc$pheno$sex,fake_bc$pheno$age)), fig=FALSE) deltaPVE <- pve_bc[-1,3] - c(0,pve_bc[1:4,3]) argmax_s <- s_seq[1:5][deltaPVE==max(deltaPVE)] scan_bc <- scan_neighbor(genoprobs=genoprobs_bc, pheno=nei_eff$nei_y, smap=smap_bc, scale=argmax_s, addcovar=as.matrix(cbind(fake_bc$pheno$sex,fake_bc$pheno$age)) ) plot_nei(scan_bc)