## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) LOCAL <- identical(Sys.getenv("LOCAL"), "true") ## ---- eval = LOCAL------------------------------------------------------------ # library(rMIDAS) # # adult <- read.csv("https://raw.githubusercontent.com/MIDASverse/MIDASpy/master/Examples/adult_data.csv", # row.names = 1)[1:1000,] ## ---- eval = LOCAL------------------------------------------------------------ # set.seed(89) # # adult <- add_missingness(adult, prop = 0.1) ## ---- eval = LOCAL------------------------------------------------------------ # # adult_cat <- c('workclass','marital_status','relationship','race','education','occupation','native_country') # adult_bin <- c('sex','class_labels') # # # Apply rMIDAS preprocessing steps # adult_conv <- convert(adult, # bin_cols = adult_bin, # cat_cols = adult_cat, # minmax_scale = TRUE) ## ---- eval = LOCAL------------------------------------------------------------ # # Train the model for 20 epochs # adult_train <- train(adult_conv, # training_epochs = 20, # layer_structure = c(128,128), # input_drop = 0.75, # seed = 89) ## ---- eval = LOCAL------------------------------------------------------------ # # # Generate 10 imputed datasets # adult_complete <- complete(adult_train, m = 10) # # # Inspect first imputed dataset: # head(adult_complete[[1]]) ## ---- eval = LOCAL------------------------------------------------------------ # # # Estimate logit model on 10 completed datasets (using Rubin's combination rules) # adult_model <- combine("class_labels ~ hours_per_week + sex", # adult_complete, # family = stats::binomial) # # adult_model