## ----setup, include=FALSE----------------------------------------------------- #knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE) knitr::opts_chunk$set(warning = FALSE) knitr::opts_chunk$set(cache=TRUE) ## ---- eval=FALSE-------------------------------------------------------------- # # # Current version # install.packages('rADA') # # # Development version # devtools::install_github('egmg726/rADA') # ## ---- message=FALSE----------------------------------------------------------- library(rADA) library(forestplot) library(ggplot2) library(grid) library(gridExtra) library(reshape2) ## ----------------------------------------------------------------------------- data(lognormAssay) ## ----------------------------------------------------------------------------- head(lognormAssay) ## ----------------------------------------------------------------------------- assay.obj <- importAssay(lognormAssay, exp.name = 'Experiment1') ## ----------------------------------------------------------------------------- assay.obj <- calcCvStats(assay.obj) ## ----------------------------------------------------------------------------- names(assay.obj@stats) ## ----------------------------------------------------------------------------- table(assay.obj@stats$is.adj.df$D1Op2) ## ----------------------------------------------------------------------------- table(assay.obj@stats$is.adj.df$D2Op1) ## ----------------------------------------------------------------------------- head(assay.obj@melted.data, n = 7) ## ----------------------------------------------------------------------------- evalBoxplot(assay.obj, var = 'Day') ## ----------------------------------------------------------------------------- evalBoxplot(assay.obj, var = 'Operator') + theme_minimal() ## ----------------------------------------------------------------------------- evalBoxplot(assay.obj, var = 'Replicate') + ggplot2::theme_minimal() + ggplot2::scale_fill_manual(values='#00a4b2') ## ----------------------------------------------------------------------------- # Create the boxplot for the top of the plot p1 <- ggplot(assay.obj@melted.data, aes(x=Category,y=value)) + stat_boxplot(geom ='errorbar',width=0.2, size = 1.5) +geom_boxplot(size = 1.1) + coord_flip() + scale_y_continuous(limits = c(0, 40)) + theme( axis.title=element_text(size=12,face="bold"), panel.background = element_blank(), panel.grid = element_blank(), axis.title.y = element_blank(), axis.title.x = element_blank(), axis.ticks.x=element_blank(), axis.ticks.y=element_blank(), panel.border = element_rect(colour = "black", fill=NA, size=2), axis.text.x=element_blank(), axis.text.y=element_blank()) # Create the histogram for the bottom of the plot p2 <- ggplot(assay.obj@melted.data, aes(x=value)) + geom_histogram(aes(x = value, y = ..density..), colour="black", fill="#6c78a7", size = 2) + scale_x_continuous(limits = c(0, 40)) + stat_function(fun = dnorm, args = list(mean = mean(assay.obj@melted.data$value, na.rm = TRUE), sd = sd(assay.obj@melted.data$value, na.rm = TRUE)), size = 2) + theme( axis.title=element_text(size=12,face="bold"), panel.border = element_rect(colour = "black", fill=NA, size=2), panel.background = element_blank(), panel.grid = element_blank()) ## ----------------------------------------------------------------------------- grid.newpage() grid.draw(rbind(ggplotGrob(p1), ggplotGrob(p2), size = "last")) ## ----------------------------------------------------------------------------- evalNorm(assay.obj = assay.obj, category = 'Experiment1', data.transf = FALSE, return.object=FALSE) ## ----------------------------------------------------------------------------- assay.obj <- evalNorm(assay.obj = assay.obj, category = 'Experiment1', data.transf = TRUE, transf.method = 'log10') ## ----------------------------------------------------------------------------- names(assay.obj@stats) ## ----------------------------------------------------------------------------- # Results from the Shapiro-Wilks test print(assay.obj@stats$sw.results) # Calculated skewness value print(assay.obj@stats$skewness) # Recommendation based on the previous 2 values print(assay.obj@stats$recommendation) ## ----------------------------------------------------------------------------- assay.obj <- evalNorm(assay.obj = assay.obj, category = 'Experiment1', data.transf = FALSE, excl.outliers = TRUE) ## ----------------------------------------------------------------------------- assay.obj <- scp(assay.obj = assay.obj, category = 'Experiment1', distrib = 'nonparametric', data.transf = FALSE, rm.out = FALSE) print(assay.obj@scp.table) ## ----------------------------------------------------------------------------- assay.obj <- scp(assay.obj = assay.obj, category = 'Experiment1', distrib = 'normal', #assay.norm.eval$recommendation, data.transf = TRUE, transf.method = 'log10', rm.out = FALSE) print(assay.obj@scp.table) ## ----------------------------------------------------------------------------- scpForestPlot(assay.obj) ## ----------------------------------------------------------------------------- sessionInfo()