## ----include = FALSE---------------------------------------------------------- options(rmarkdown.html_vignette.check_title = FALSE) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE ) ## ----setup-------------------------------------------------------------------- library(quollr) library(dplyr) library(ggplot2) ## ----------------------------------------------------------------------------- model <- fit_highd_model( highd_data = scurve, nldr_data = scurve_umap, b1 = 4, q = 0.1, benchmark_highdens = 5 ) df_bin_centroids <- model$model_2d df_bin <- model$model_highd ## ----------------------------------------------------------------------------- pred_df_training <- predict_emb( highd_data = scurve, model_highd = scurve_model_obj$model_highd, model_2d = scurve_model_obj$model_2d ) glimpse(pred_df_training) ## ----fig.alt="UMAP embedding of the S-curve training data with predictions in red."---- umap_scaled <- scurve_model_obj$nldr_obj$scaled_nldr umap_scaled |> ggplot(aes(x = emb1, y = emb2, label = ID)) + geom_point(alpha = 0.5) + geom_point(data = pred_df_training, aes(x = pred_emb_1, y = pred_emb_2), color = "red", alpha = 0.5) + coord_equal() + theme( plot.title = element_text(hjust = 0.5, size = 18, face = "bold"), axis.text = element_text(size = 5), axis.title = element_text(size = 7) ) ## ----------------------------------------------------------------------------- glance( highd_data = scurve, model_highd = scurve_model_obj$model_highd, model_2d = scurve_model_obj$model_2d ) ## ----------------------------------------------------------------------------- augment( highd_data = scurve, model_highd = scurve_model_obj$model_highd, model_2d = scurve_model_obj$model_2d ) |> head(5)