Version: | 0.2.12 |
Date: | 2019-12-09 |
Title: | Analysis of Queueing Networks and Models |
Author: | Pedro Canadilla |
Maintainer: | Pedro Canadilla <pedro.canadilla@gmail.com> |
Depends: | R (≥ 2.11.1) |
Description: | It provides versatile tools for analysis of birth and death based Markovian Queueing Models and Single and Multiclass Product-Form Queueing Networks. It implements M/M/1, M/M/c, M/M/Infinite, M/M/1/K, M/M/c/K, M/M/c/c, M/M/1/K/K, M/M/c/K/K, M/M/c/K/m, M/M/Infinite/K/K, Multiple Channel Open Jackson Networks, Multiple Channel Closed Jackson Networks, Single Channel Multiple Class Open Networks, Single Channel Multiple Class Closed Networks and Single Channel Multiple Class Mixed Networks. Also it provides a B-Erlang, C-Erlang and Engset calculators. This work is dedicated to the memory of D. Sixto Rios Insua. |
License: | GPL-2 |
Copyright: | Pedro Canadilla |
URL: | https://www.r-project.org |
NeedsCompilation: | no |
Packaged: | 2019-12-08 20:01:05 UTC; pedro |
Repository: | CRAN |
Date/Publication: | 2019-12-08 22:10:02 UTC |
RoxygenNote: | 6.0.1 |
Analysis of Queueing Networks and Models.
Description
It provides a versatile tool for analysis of birth and death based Markovian Queueing Models and Single and Multiclass Product-Form Queueing Networks.
It implements the following basic markovian models:
M/M/1, | M/M/c, | M/M/Infinite, | |
M/M/1/K, | M/M/c/K, | M/M/c/c, | |
M/M/1/K/K, | M/M/c/K/K, | M/M/c/K/m, | M/M/Infinite/K/K |
It also solves the following types of networks:
Multiple Channel Open Jackson Networks.
Multiple Channel Closed Jackson Networks.
Single Channel Multiple Class Open Networks.
Single Channel Multiple Class Closed Networks
Single Channel Multiple Class Mixed Networks
Also it provides B-Erlang, C-Erlang and Engset calculators.
This work is dedicated to the memory of D. Sixto Rios Insua.
Details
All models are used in the same way:
Create inputs calling the appropiate NewInput.model. For example,
x <- NewInput.MM1(lambda=0.25, mu=1, n=10)
for a M/M/1 model. To know the exact acronymn model to use for NewInput function, you can search the html help or writehelp.search("NewInput")
at the command line.Optionally, as a help for creating the inputs, the
CheckInput(x)
function can be calledSolve the model calling
y <- QueueingModel(x)
. In this step, theCheckInput(x)
will be called. That is the reason that the previous step is optionalFinally, you can get a performance value as
W(y)
,Wq(y)
or a report of the principals performace values callingsummary(y)
See the examples for more detailed information of the use.
Author(s)
Author, Maintainer and Copyright: Pedro Canadilla pedro.canadilla@gmail.com
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
Examples
## M/M/1 model
summary(QueueingModel(NewInput.MM1(lambda=1/4, mu=1/3, n=0)))
## M/M/1/K model
summary(QueueingModel(NewInput.MM1K(lambda=1/4, mu=1/3, k=3)))
Returns the probability that all servers are busy
Description
Returns the probability that all servers are busy
Usage
B_erlang(c=1, u=0)
Arguments
c |
numbers of servers |
u |
lambda/mu, that is, ratio of rate of arrivals and rate of service |
Details
Returns the probability that all servers are busy
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Jagerman1974] Jagerman, D. L. (1974).
Some properties of the Erlang loss function.
Bell System Tech. J. (53), 525-551
See Also
Examples
## two servers
B_erlang(2, 0.5/0.7)
Returns the probability to wait in queue because all servers are busy
Description
Returns the probability to wait in queue because all servers are busy
Usage
C_erlang(c=1, r=0)
Arguments
c |
numbers of servers |
r |
lambda/mu, that is, ratio of rate of arrivals and rate of service |
Details
Returns the probability to wait in queue because all servers are busy
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## two servers
C_erlang(2, 0.5/0.7)
Generic S3 method to check the params of a queueing model (or network)
Description
Generic S3 method to check the params of a queueing model (or network)
Usage
CheckInput(x, ...)
Arguments
x |
a object of class i_MM1, i_MMC, i_MM1K, i_MMCK, i_MM1KK, i_MMCKK, i_MMCC, i_MMCKM, i_MMInfKK, i_MMInf, i_OJN |
... |
aditional arguments |
Details
Generic S3 method to check the params of a queueing model (or network)
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
CheckInput.i_MM1
CheckInput.i_MMC
CheckInput.i_MM1K
CheckInput.i_MMCK
CheckInput.i_MM1KK
CheckInput.i_MMCKK
CheckInput.i_MMCC
CheckInput.i_MMCKM
CheckInput.i_MMInfKK
CheckInput.i_MMInf
CheckInput.i_OJN
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Check the inputs
CheckInput(i_mm1)
Checks the input params of a generic Birth and Death process model
Description
Checks the input params of a generic Birth and Death process model
Usage
## S3 method for class 'i_BnD'
CheckInput(x, ...)
Arguments
x |
a object of class i_BnD |
... |
aditional arguments |
Details
Checks the input params of a generic Birth and Death process model. The inputs params are created calling previously the NewInput.BnD
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
## Check the inputs
CheckInput(i_BnD)
Check the input params of a Closed Jackson Network
Description
Check the input params of a Closed Jackson Network
Usage
## S3 method for class 'i_CJN'
CheckInput(x, ...)
Arguments
x |
a object of class i_CJN |
... |
aditional arguments |
Details
Check the input params of a Closed Jackson Network. The inputs params are created calling previously the NewInput.CJN
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
CheckInput(cjn1)
Check the input params of a MultiClass Closed Network
Description
Check the input params of a MultiClass Closed Network
Usage
## S3 method for class 'i_MCCN'
CheckInput(x, ...)
Arguments
x |
a object of class i_MCCN |
... |
aditional arguments |
Details
Check the input params of a MultiClass Closed Network. The inputs params are created calling previously the NewInput.MCCN
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
CheckInput(i_MCCN1)
Check the input params of a MultiClass Mixed Network
Description
Check the input params of a MultiClass Mixed Network
Usage
## S3 method for class 'i_MCMN'
CheckInput(x, ...)
Arguments
x |
a object of class i_MCMN |
... |
aditional arguments |
Details
Check the input params of a MultiClass Mixed Network. The inputs params are created calling previously the NewInput.MCMN
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
CheckInput(i_mcmn1)
Check the input params of a MultiClass Open Network
Description
Check the input params of a MultiClass Open Network
Usage
## S3 method for class 'i_MCON'
CheckInput(x, ...)
Arguments
x |
a object of class i_MCON |
... |
aditional arguments |
Details
Check the input params of a MultiClass Open Network. The inputs params are created calling previously the NewInput.MCON
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
CheckInput(i_mcon1)
Checks the input params of a M/M/1 queueing model
Description
Checks the input params of a M/M/1 queueing model
Usage
## S3 method for class 'i_MM1'
CheckInput(x, ...)
Arguments
x |
a object of class i_MM1 |
... |
aditional arguments |
Details
Checks the input params of a M/M/1 queueing model. The inputs params are created calling previously the NewInput.MM1
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Check the inputs
CheckInput(i_mm1)
Checks the input params of a M/M/1/K queueing model
Description
Checks the input params of a M/M/1/K queueing model
Usage
## S3 method for class 'i_MM1K'
CheckInput(x, ...)
Arguments
x |
a object of class i_MM1K |
... |
aditional arguments |
Details
Checks the input params of a M/M/1/K queueing model. The inputs params are created calling previously the NewInput.MM1K
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## check the parameters
CheckInput(i_mm1k)
Checks the input params of a M/M/1/K/K queueing model
Description
Checks the input params of a M/M/1/K/K queueing model
Usage
## S3 method for class 'i_MM1KK'
CheckInput(x, ...)
Arguments
x |
a object of class i_MM1KK |
... |
aditional arguments |
Details
Checks the input params of a M/M/1/K/K queueing model. The inputs params are created calling previously the NewInput.MM1KK
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## check the parameters
CheckInput(i_mm1kk)
Checks the input params of a M/M/c queueing model
Description
Checks the input params of a M/M/c queueing model
Usage
## S3 method for class 'i_MMC'
CheckInput(x, ...)
Arguments
x |
a object of class i_MMC |
... |
aditional arguments |
Details
Checks the input params of a M/M/c queueing model. The inputs params are created calling previously the NewInput.MMC
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## check the parameters
CheckInput(i_mmc)
Checks the input params of a M/M/c/c queueing model
Description
Checks the input params of a M/M/c/c queueing model
Usage
## S3 method for class 'i_MMCC'
CheckInput(x, ...)
Arguments
x |
a object of class i_MMCC |
... |
aditional arguments |
Details
Checks the input params of a M/M/c/c queueing model. The inputs params are created calling previously the NewInput.MMCC
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## check the parameters
CheckInput(i_mmcc)
Checks the input params of a M/M/c/K queueing model
Description
Checks the input params of a M/M/c/K queueing model
Usage
## S3 method for class 'i_MMCK'
CheckInput(x, ...)
Arguments
x |
a object of class i_MMCK |
... |
aditional arguments |
Details
Checks the input params of a M/M/c/K queueing model. The inputs params are created calling previously the NewInput.MMCK
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Check the inputs
CheckInput(i_mmck)
Checks the input params of a M/M/c/K/K queueing model
Description
Checks the input params of a M/M/c/K/K queueing model
Usage
## S3 method for class 'i_MMCKK'
CheckInput(x, ...)
Arguments
x |
a object of class i_MMCKK |
... |
aditional arguments |
Details
Checks the input params of a M/M/c/K/K queueing model. The inputs params are created calling previously the NewInput.MMCKK
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## check the parameters
CheckInput(i_mmckk)
Checks the input params of a M/M/c/K/m queueing model
Description
Checks the input params of a M/M/c/K/m queueing model
Usage
## S3 method for class 'i_MMCKM'
CheckInput(x, ...)
Arguments
x |
a object of class i_MMCKM |
... |
aditional arguments |
Details
Checks the input params of a M/M/c/K/m queueing model. The inputs params are created calling previously the NewInput.MMCKM
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## check the parameters
CheckInput(i_mmckm)
Checks the input params of a M/M/Infinite queueing model
Description
Checks the input params of a M/M/Infinite queueing model
Usage
## S3 method for class 'i_MMInf'
CheckInput(x, ...)
Arguments
x |
a object of class i_MMInf |
... |
aditional arguments |
Details
Checks the input params of a M/M/Infinite queueing model. The inputs params are created calling previously the NewInput.MMInf
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Check the parameters
CheckInput(i_mminf)
Checks the input params of a M/M/Infinite/K/K queueing model
Description
Checks the input params of a M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'i_MMInfKK'
CheckInput(x, ...)
Arguments
x |
a object of class i_MMInfKK |
... |
aditional arguments |
Details
Checks the input params of a M/M/Infinite/K/K queueing model. The inputs params are created calling previously the NewInput.MMInfKK
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## check the parameters
CheckInput(i_MMInfKK)
Check the input params of an Open Jackson Network
Description
Check the input params of an Open Jackson Network
Usage
## S3 method for class 'i_OJN'
CheckInput(x, ...)
Arguments
x |
a object of class i_OJN |
... |
aditional arguments |
Details
Check the input params of an Open Jackson Network. The inputs params are created calling previously the NewInput.OJN
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
CheckInput(ojn1)
Compare several queueing models in a tabulated format
Description
Compare several queueing models in a tabulated format
Usage
CompareQueueingModels(model, ...)
CompareQueueingModels2(models)
Arguments
model |
A Queueing Model obtained calling QueueingModel from classes described in the details section |
... |
a separated by comma list of queueing models obtained calling QueueingModel from classes described in the details section |
models |
A list of queueing models obtained calling QueueingModel from classes described in the details section |
Details
Compare several queueing models in a tabulated format. By now, only o_MM1, o_MMC, o_MMInf, o_MM1K, o_MMCK, o_MMCC, o_MM1KK, o_MMCKK, o_MMCKM, o_MMInfKK classes can be compared
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
q1 <- QueueingModel(NewInput.MM1(lambda=5, mu=7))
q2 <- QueueingModel(NewInput.MMC(lambda=5, mu=3, c=4))
q3 <- QueueingModel(NewInput.MMInf(lambda=3, mu=4))
q4 <- QueueingModel(NewInput.MMCC(lambda=5, mu=3, c=4))
CompareQueueingModels(q1, q2, q3)
CompareQueueingModels2(list(q1, q2, q3, q4))
Returns the probability that all servers are busy
Description
Returns the probability that all servers are busy
Usage
Engset(k=1, c=0, r=0)
Arguments
k |
numbers of users |
c |
numbers of servers |
r |
lambda/mu, that is, ratio of rate of arrivals and rate of service |
Details
Returns the probability of blocking in a finite source model
See Also
Examples
## three users, two servers
Engset(3, 2, 0.5/0.7)
Returns the input parameters of a queueing model (or network)
Description
Returns the inputs parameters of a already built queueing model (or network)
Usage
Inputs(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Returns the input parameters of a queueing model (or network)
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Inputs.o_MM1
Inputs.o_MMC
Inputs.o_MM1K
Inputs.o_MMCK
Inputs.o_MM1KK
Inputs.o_MMCKK
Inputs.o_MMCC
Inputs.o_MMCKM
Inputs.o_MMInfKK
Inputs.o_MMInf
Inputs.o_OJN
Inputs.o_CJN
Inputs.o_MCON
Inputs.o_MCCN
Inputs.o_MCMN
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## It returns the Inputs
Inputs(o_mm1)
Returns the input parameters of a generic Birth and Death process model
Description
Returns the inputs parameters of a already built Birth and Death process model
Usage
## S3 method for class 'o_BnD'
Inputs(x, ...)
Arguments
x |
a object of class o_BnD |
... |
aditional arguments |
Details
Returns the input parameters of a generic Birth and Death process model. The inputs parameters are created calling previously the NewInput.BnD
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
## Build the model
o_BnD <- QueueingModel(i_BnD)
## It returns the Inputs
Inputs(o_BnD)
Returns the input params of a Closed Jackson Network
Description
Returns the input params of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
Inputs(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Returns the input params of a Closed Jackson Network. The inputs parameters are created calling previously the NewInput.CJN
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
Inputs(m_cjn1)
Returns the input params of a MultiClass Closed Network
Description
Returns the input params of a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Inputs(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Returns the input params of a MultiClass Closed Network. The inputs parameters are created calling previously the NewInput.MCCN
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Inputs(o_MCCN1)
Returns the input params of a MultiClass Mixed Network
Description
Returns the input params of a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Inputs(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Returns the input params of a MultiClass Mixed Network. The inputs parameters are created calling previously the NewInput.MCMN
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Inputs(o_mcmn1)
Returns the input params of a MultiClass Open Network
Description
Returns the input params of a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Inputs(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Returns the input params of a MultiClass Open Network. The inputs parameters are created calling previously the NewInput.MCON
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Inputs(o_mcon1)
Returns the input parameters of a M/M/1 queueing model
Description
Returns the inputs parameters of a already built M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
Inputs(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/1 queueing model. The inputs parameters are created calling previously the NewInput.MM1
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## It returns the Inputs
Inputs(o_mm1)
Returns the input parameters of a M/M/1/K queueing model
Description
Returns the inputs parameters of a already built M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
Inputs(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/1/K queueing model. The inputs parameters are created calling previously the NewInput.MM1K
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## It returns the Inputs
Inputs(o_mm1k)
Returns the input parameters of a M/M/1/K/K queueing model
Description
Returns the inputs parameters of a already built M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
Inputs(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/1/K/K queueing model. The inputs parameters are created calling previously the NewInput.MM1KK
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## It returns the Inputs
Inputs(o_mm1kk)
Returns the input parameters of a M/M/c queueing model
Description
Returns the inputs parameters of a already built M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
Inputs(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/c queueing model. The inputs parameters are created calling previously the NewInput.MMC
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## It returns the Inputs
Inputs(o_mmc)
Returns the input parameters of a M/M/c/c queueing model
Description
Returns the inputs parameters of a already built M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
Inputs(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/c/c queueing model. The inputs parameters are created calling previously the NewInput.MMCC
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## It returns the Inputs
Inputs(o_mmcc)
Returns the input parameters of a M/M/c/K queueing model
Description
Returns the inputs parameters of a already built M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
Inputs(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/c/K queueing model. The inputs parameters are created calling previously the NewInput.MMCK
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## It returns the Inputs
Inputs(o_mmck)
Returns the input parameters of a M/M/c/K/K queueing model
Description
Returns the inputs parameters of a already built M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
Inputs(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/c/K/K queueing model. The inputs parameters are created calling previously the NewInput.MMCKK
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Retunns the Inputs
Inputs(o_mmckk)
Returns the input parameters of a M/M/c/K/m queueing model
Description
Returns the inputs parameters of a already built M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
Inputs(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/c/K/m queueing model. The inputs parameters are created calling previously the NewInput.MMCKM
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## It returns the Inputs
Inputs(o_mmckm)
Returns the input parameters of a M/M/Infinite queueing model
Description
Returns the inputs parameters of a already built M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
Inputs(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/Infinite queueing model. The inputs parameters are created calling previously the NewInput.MMInf
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## It returns the Inputs
Inputs(o_mminf)
Returns the input parameters of a M/M/Infinite/K/K queueing model
Description
Returns the inputs parameters of a already built M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
Inputs(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the input parameters of a M/M/Infinite/K/K queueing model. The inputs parameters are created calling previously the NewInput.MMInfKK
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## It returns the Inputs
Inputs(o_MMInfKK)
Returns the input params of an Open Jackson Network
Description
Returns the input params of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
Inputs(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Returns the input params of an Open Jackson Network. The inputs parameters are created calling previously the NewInput.OJN
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the model
o_ojn1 <- QueueingModel(i_ojn1)
Inputs(o_ojn1)
Returns the mean number of customers in a queueing model (or network)
Description
Returns the mean number of customers in a queueing model (or network)
Usage
L(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Returns the mean number of customers in a queueing model (or network)
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
L.o_MM1
L.o_MMC
L.o_MM1K
L.o_MMCK
L.o_MM1KK
L.o_MMCKK
L.o_MMCC
L.o_MMCKM
L.o_MMInfKK
L.o_MMInf
L.o_OJN
L.o_CJN
L.o_MCON
L.o_MCCN
L.o_MCMN
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the L
L(o_mm1)
Returns the mean number of customers in the generic Birth and Death process model
Description
Returns the mean number of customers in the generic Birth and Death process model
Usage
## S3 method for class 'o_BnD'
L(x, ...)
Arguments
x |
a object of class o_BnD |
... |
aditional arguments |
Details
Returns the mean number of customers in the generic Birth and Death process model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
## Build the model
o_BnD <- QueueingModel(i_BnD)
## Returns the L
L(o_BnD)
Returns the mean number of customers of a Closed Jackson Network
Description
Returns the mean number of customers of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
L(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Returns the mean number of customers of a Closed Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
L(m_cjn1)
Returns the mean number of customers of a MultiClass Closed Network
Description
Returns the mean number of customers of a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
L(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Returns the mean number of customers of a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
L(o_MCCN1)
Returns the mean number of customers of a MultiClass Mixed Network
Description
Returns the mean number of customers of a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
L(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Returns the mean number of customers of a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
L(o_mcmn1)
Returns the mean number of customers of a MultiClass Open Network
Description
Returns the mean number of customers of a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
L(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Returns the mean number of customers of a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
L(o_mcon1)
Returns the mean number of customers in the M/M/1 queueing model
Description
Returns the mean number of customers in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
L(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the L
L(o_mm1)
Returns the mean number of customers in the M/M/1/K queueing model
Description
Returns the mean number of customers in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
L(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the L
L(o_mm1k)
Returns the mean number of customers in the M/M/1/K/K queueing model
Description
Returns the mean number of customers in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
L(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the L
L(o_mm1kk)
Returns the mean number of customers in the M/M/c queueing model
Description
Returns the mean number of customers in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
L(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the L
L(o_mmc)
Returns the mean number of customers in the M/M/c/c queueing model
Description
Returns the mean number of customers in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
L(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the L
L(o_mmcc)
Returns the mean number of customers in the M/M/c/K queueing model
Description
Returns the mean number of customers in the M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
L(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the L
L(o_mmck)
Returns the mean number of customers in the M/M/c/K/K queueing model
Description
Returns the mean number of customers in the M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
L(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the L
L(o_mmckk)
Returns the mean number of customers in the M/M/c/K/m queueing model
Description
Returns the mean number of customers in the M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
L(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the L
L(o_mmckm)
Returns the mean number of customers in the M/M/Infinite queueing model
Description
Returns the mean number of customers in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
L(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the L
L(o_mminf)
Returns the mean number of customers in the M/M/Infinite/K/K queueing model
Description
Returns the mean number of customers in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
L(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the mean number of customers in the M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the L
L(o_MMInfKK)
Returns the mean number of customers of an Open Jackson Network
Description
Returns the mean number of customers of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
L(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Returns the mean number of customers of an Open Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the model
o_ojn <- QueueingModel(i_ojn)
L(o_ojn)
Returns the vector with the mean number of customers of each class in a multiclass queueing network
Description
Returns the vector with the mean number of customers of each class in a multiclass queueing network
Usage
Lc(x, ...)
Arguments
x |
a object of class o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Returns the vector with the mean number of customers of each class in a multiclass queueing network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Lc(o_mcon1)
Returns the vector with the mean number of customers of each class in a MultiClass Closed Network
Description
Returns the vector with the mean number of customers of each class in a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Lc(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Returns the vector with the mean number of customers of each class in a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Lc(o_MCCN1)
Returns the vector with the mean number of customers of each class in a MultiClass Mixed Network
Description
Returns the vector with the mean number of customers of each class in a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Lc(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Returns the vector with the mean number of customers of each class in a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Lc(o_mcmn1)
Returns the vector with the mean number of customers of each class in a MultiClass Open Network
Description
Returns the vector with the mean number of customers of each class in a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Lc(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Returns the vector with the mean number of customers of each class in a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Lc(o_mcon1)
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Network
Description
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Network
Usage
Lck(x, ...)
Arguments
x |
a object of class o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Lck.o_MCON
Lck.o_MCCN
Lck.o_MCMN
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Lck(o_mcon1)
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Closed Network
Description
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Lck(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Lck(o_MCCN1)
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Mixed Network
Description
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Lck(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Lck(o_mcmn1)
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Open Network
Description
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Lck(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Lck(o_mcon1)
Returns the vector with the mean number of customers in each node (server) of a queueing network
Description
Returns the vector with the mean number of customers in each node (server) of a queueing network
Usage
Lk(x, ...)
Arguments
x |
a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Returns the vector with the mean number of customers in each node (server) of a queueing network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Lk.o_OJN
Lk.o_CJN
Lk.o_MCON
Lk.o_MCCN
Lk.o_MCMN
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Lk(o_mcon1)
Returns the vector with the mean number of customers in each node (server) of a Closed Jackson Network
Description
Returns the vector with the mean number of customers in each node (server) of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
Lk(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Returns the vector with the mean number of customers in each node (server) of a Closed Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
Lk(m_cjn1)
Returns a vector with the mean number of customers in each node (server) of a MultiClass Closed Network
Description
Returns a vector with the mean number of customers in each node (server) of a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Lk(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Returns a vector with the mean number of customers in each node (server) of a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Lk(o_MCCN1)
Returns a vector with the mean number of customers in each node (server) of a MultiClass Mixed Network
Description
Returns a vector with the mean number of customers in each node (server) of a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Lk(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Returns a vector with the mean number of customers in each node (server) of a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Lk(o_mcmn1)
Returns a vector with the mean number of customers in each node (server) of a MultiClass Open Network
Description
Returns a vector with the mean number of customers in each node (server) of a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Lk(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Returns a vector with the mean number of customers in each node (server) of a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Lk(o_mcon1)
Returns the vector with the mean number of customers in each node (server) of an Open Jackson Network
Description
Returns the vector with the mean number of customers in each node (server) of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
Lk(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Returns the vector with the mean number of customers in each node (server) of an Open Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the model
o_ojn <- QueueingModel(i_ojn)
Lk(o_ojn)
Returns the mean number of customers in the queue in a queueing model
Description
Returns the mean number of customers in the queue in a queueing model
Usage
Lq(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in a queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Lq.o_MM1
Lq.o_MMC
Lq.o_MM1K
Lq.o_MMCK
Lq.o_MM1KK
Lq.o_MMCKK
Lq.o_MMCC
Lq.o_MMCKM
Lq.o_MMInfKK
Lq.o_MMInf
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lq
Lq(o_mm1)
Returns the mean number of customers in the queue in the M/M/1 queueing model
Description
Returns the mean number of customers in the queue in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
Lq(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lq
Lq(o_mm1)
Returns the mean number of customers in the queue in the M/M/1/K queueing model
Description
Returns the mean number of customers in the queue in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
Lq(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the Lq
Lq(o_mm1k)
Returns the mean number of customers in the queue in the M/M/1/K/K queueing model
Description
Returns the mean number of customers in the queue in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
Lq(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the Lq
Lq(o_mm1kk)
Returns the mean number of customers in the queue in the M/M/c queueing model
Description
Returns the mean number of customers in the queue in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
Lq(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Lq
Lq(o_mmc)
Returns the mean number of customers in the queue in the M/M/c/c queueing model
Description
Returns the mean number of customers in the queue in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
Lq(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the Lq
Lq(o_mmcc)
Returns the mean number of customers in the queue in the M/M/c/K queueing model
Description
Returns the mean number of customers in the queue in the M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
Lq(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Lq
Lq(o_mmck)
Returns the mean number of customers in the queue in the M/M/c/K/K queueing model
Description
Returns the mean number of customers in the queue in the M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
Lq(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Lq
Lq(o_mmckk)
Returns the mean number of customers in the queue in the M/M/c/K/m queueing model
Description
Returns the mean number of customers in the queue in the M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
Lq(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Lq
Lq(o_mmckm)
Returns the mean number of customers in the queue in the M/M/Infinite queueing model
Description
Returns the mean number of customers in the queue in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
Lq(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Lq
Lq(o_mminf)
Returns the mean number of customers in the queue in the M/M/Infinite/K/K queueing model
Description
Returns the mean number of customers in the queue in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
Lq(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Lq
Lq(o_MMInfKK)
Returns the mean number of customers in queue when there is queue in a queueing model
Description
Returns the mean number of customers in queue when there is queue in a queueing model
Usage
Lqq(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in a queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Lqq.o_MM1
Lqq.o_MMC
Lqq.o_MM1K
Lqq.o_MMCK
Lqq.o_MM1KK
Lqq.o_MMCKK
Lqq.o_MMCC
Lqq.o_MMCKM
Lqq.o_MMInfKK
Lqq.o_MMInf
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lqq
Lqq(o_mm1)
Returns the mean number of customers in queue when there is queue in the M/M/1 queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
Lqq(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in the M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lqq
Lqq(o_mm1)
Returns the mean number of customers in queue when there is queue in the M/M/1/K queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
Lqq(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in the M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the Lq
Lqq(o_mm1k)
Returns the mean number of customers in queue when there is queue in the M/M/1/K/K queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
Lqq(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in the M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the Lqq
Lqq(o_mm1kk)
Returns the mean number of customers in queue when there is queue in the M/M/c queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
Lqq(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in the M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Lqq
Lqq(o_mmc)
Returns the mean number of customers in queue when there is queue in the M/M/c/c queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
Lqq(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in the M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the Lqq
Lqq(o_mmcc)
Returns the mean number of customers in queue when there is queue in the M/M/c/K queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
Lqq(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in the M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Lqq
Lqq(o_mmck)
Returns the mean number of customers in queue when there is queue in the M/M/c/K/K queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
Lqq(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in the M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Lqq
Lqq(o_mmckk)
Returns the mean number of customers in queue when there is queue in the M/M/c/K/m queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
Lqq(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the mean number of customers in the queue in the M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Lqq
Lqq(o_mmckm)
Returns the mean number of customers in queue when there is queue in the M/M/Infinite queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
Lqq(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in the M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Lqq
Lqq(o_mminf)
Returns the mean number of customers in queue when there is queue in the M/M/Infinite/K/K queueing model
Description
Returns the mean number of customers in queue when there is queue in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
Lqq(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the mean number of customers in queue when there is queue in the M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Lqq
Lqq(o_MMInfKK)
Define the inputs of a new generic Birth and Death process model
Description
Define the inputs of a new generic Birth and Death process model
Usage
NewInput.BnD(lambda=NULL, mu=NULL)
Arguments
lambda |
vectors of arrival rate depending of the number of users in the system. Observe that in R, the vectors starts counting at 1, so lambda[1] is the arrival rate when the system has 0 users on it |
mu |
vectors of service rate depending of the number of users in the system. Observe that in R, the vectors starts counting at 1, so mu[1] is the arrival rate when the system has 1 users on it |
Details
Define the inputs of a new generic Birth and Death process model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
Define the inputs of a Closed Jackson Network
Description
Define the inputs of a Closed Jackson Network
Usage
NewInput.CJN(prob=NULL, n=0, z=0, operational=FALSE, method=0, tol=0.001, ...)
NewInput2.CJN(prob=NULL, n=0, z=0, operational=FALSE, method=0, tol=0.001, nodes)
NewInput3.CJN(n, z, numNodes, vType, vVisit, vService, vChannel, method=0, tol=0.001)
Arguments
prob |
It is probability transition matrix or visit ratio vector. That is, the prob[i, j] is the transition probability of node i to node j, or prob[i] is the visit ratio (a probability, that is, a value between 0 and 1) to node i. Also, the visit ratio can express the number of times that a client visits the queueing center, in a more operational point of view. See the parameter operational |
n |
number of customers in the Network |
z |
think time of the client |
operational |
If prob is a vector with the visit ratios, operational equal to FALSE gives to the visit ratio a probability meaning, that is, as the stacionary values of the imbedded markov chain. If operational is equal to TRUE, the operational point of view is used: it is the number of visits that the same client makes to a node. |
method |
If method is 0, the exact MVA algorith is used. If method is 1, the Bard-Schweitzer approximation algorithm is used. |
tol |
If the parameter method is 1, this is the tolerance parameter of the algorithm. |
... |
a separated by comma list of nodes of i_MM1, i_MMC or i_MMInf class |
nodes |
A list of nodes of i_MM1, i_MMC or i_MMInf class |
numNodes |
The number of nodes of the network |
vType |
A vector with the type of server: "Q" for a queueing node, "D" for a delay node |
vVisit |
A vector with the visit ratios. It represent visit counts to a center as if the parameter operational were TRUE |
vService |
A vector with the services time of each node |
vChannel |
A vector with the number of channels of the node. The type of the server has to be "Q" to be inspected |
Details
Define the inputs of a Closed Jackson Network. For a operational use, NewInput3.CJN is recommended. For a more academic use, NewInput.CJN or NewInput2.CJN is recommended. Please, note that the different ways to create the inputs for a Closed Jackson Network are equivalent to each other, and no validation is done at this stage. The validation is done calling CheckInput function.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
## think time = 0
z <- 0
## operational value
operational <- FALSE
## definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
## Not run:
cjn1 <- NewInput2.CJN(prob, n, z, operational, 0, 0.001, list(n1, n2))
## End(Not run)
## using visit ratios and service demands. See [Lazowska84] pag 117.
## E[S] cpu = 0.005, Visit cpu = 121, D cpu = E[S] cpu * Visit cpu = 0.605
cpu <- NewInput.MM1(mu=1/0.005)
## E[S] disk1 = 0.030, Visit disk1 = 70, D disk1 = E[S] disk1 * Visit disk1 = 2.1
disk1 <- NewInput.MM1(mu=1/0.030)
## E[S] disk2 = 0.027, Visit disk2 = 50, D disk2 = E[S] disk2 * Visit disk2 = 1.35
disk2 <- NewInput.MM1(mu=1/0.027)
## The visit ratios.
vVisit <- c(121, 70, 50)
operational <- TRUE
net <- NewInput.CJN(prob=vVisit, n=3, z=15, operational, 0, 0.001, cpu, disk1, disk2)
## Using the operational creation function
n <- 3
think <- 15
numNodes <- 3
vType <- c("Q", "Q", "Q")
vService <- c(0.005, 0.030, 0.027)
vChannel <- c(1, 1, 1)
net2 <- NewInput3.CJN(n, think, numNodes, vType, vVisit, vService, vChannel, method=0, tol=0.001)
Define the inputs of a MultiClass Closed Network
Description
Define the inputs of a MultiClass Closed Network
Usage
NewInput.MCCN(
classes, vNumber, vThink, nodes, vType, vVisit, vService, method=1, tol=0.01
)
Arguments
classes |
The number of classes |
vNumber |
A vector with the number of customers of each class |
vThink |
A vector with the think time of each class |
nodes |
The number of nodes in the network |
vType |
A vector with the type of node: "Q" for queueing nodes or "D" for delay nodes |
vVisit |
A matrix[i, j]. The rows represents the different visit count for each class i to each node j |
vService |
A matrix[i, j]. The rows represents the different service time for each class i in each node j |
method |
If method is 0, the exact MVA algorith is used. If method is 1, the Bard-Schweitzer approximation algorithm is used |
tol |
If the parameter method is 1, this is the tolerance parameter of the algorithm |
Details
Define the inputs of a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
Define the inputs of a MultiClass Mixed Network
Description
Define the inputs of a MultiClass Mixed Network
Usage
NewInput.MCMN(
classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService, method=0, tol=0.01
)
Arguments
classes |
The number of classes |
vLambda |
It is a vector with the rate of arrivals of each class |
vNumber |
A vector with the number of customers of each class |
vThink |
A vector with the think time of each class |
nodes |
The number of nodes in the network |
vType |
A vector with the type of node: "Q" for queueing nodes or "D" for delay nodes |
vVisit |
A matrix[i, j]. The rows represents the different visit count for each class i to each node j. Take caution about the orden: open classes are defined first and closed clasess are defined second |
vService |
A matrix[i, j]. The rows represents the different service times for each class i in each node j. Take caution about the orden: open classes are defined first and closed clasess are defined second. |
method |
If method is 0, the exact MVA algorith is used. If method is 1, the Bard-Schweitzer approximation algorithm is used |
tol |
If the parameter method is 1, this is the tolerance parameter of the algorithm |
Details
Define the inputs of a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4 # A and B are open classes and C and D are closed classes.
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
# When the visit ratios and vService are set,
# be sure that the open classes are in the first positions
# and the closed classes after the open classes.
vVisit <- matrix(data=1, nrow=4, ncol=2)
# A and B are open clasess:
# with demand service of 1/4 and 1/2 at the node 1 and 1/2 and 1 at the node 2
# C and D are open clasess:
# with demand service of 1/4 and 1/2 at the node 1 and 1/2 and 1 at the node 2
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
Define the inputs of a MultiClass Open Network
Description
Define the inputs of a MultiClass Open Network
Usage
NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
Arguments
classes |
The number of classes |
vLambda |
It is a vector with the rate of arrivals of each class |
nodes |
The number of nodes in the network |
vType |
A vector with the type of node: "Q" for queueing nodes or "D" for delay nodes |
vVisit |
A matrix[i, j]. The rows represents the different visit count for each class i to each node j |
vService |
A matrix[i, j]. The rows represents the different service times for each class i in each node j |
Details
Define the inputs of a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
Define the inputs of a new M/M/1 queueing model
Description
Define the inputs of a new M/M/1 queueing model
Usage
NewInput.MM1(lambda=0, mu=0, n=0)
Arguments
lambda |
arrival rate |
mu |
server service rate |
n |
number of customers in the system from which you want to obtain its probabilities. Put n=0 for a idle probability (no customer present in the system or system idle). With n=-1, no probabilities are computed |
Details
Define the inputs of a new M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
Define the inputs of a new M/M/1/K queueing model
Description
Define the inputs of a new M/M/1/K queueing model
Usage
NewInput.MM1K(lambda=0, mu=0, k=1)
Arguments
lambda |
arrival rate |
mu |
server service rate |
k |
system capacity |
Details
Define the inputs of a new M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
Define the inputs of a new M/M/1/K/K queueing model
Description
Define the inputs of a new M/M/1/K/K queueing model
Usage
NewInput.MM1KK(lambda=0, mu=0, k=1, method=3)
Arguments
lambda |
arrival rate |
mu |
server service rate |
k |
system capacity |
method |
method of computation of the probabilities of k (system capacity) customers down. With method=0, the exact results are calculated using the formal definition. With method=1, aproximate results are calculated using Stirling aproximation of factorials and logaritms. With method=2, Jain's Method [Jain2007], pag. 26 is used. With method=3, the result that K-n customers up has a truncated poisson distribution is used [Kobayashi2012] pag. 709 |
Details
Define the inputs of a new M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Jain2007] Joti Lal Jain, Sri Gopal Mohanty, Walter Bohm (2007).
A course on Queueing Models.
Chapman-Hall.
[Kobayashi2012] Hisashi Kobayashi, Brian L. Mark, William Turin (2012).
Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance.
Cambridge University Press.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
Define the inputs of a new M/M/c queueing model
Description
Define the inputs of a new M/M/c queueing model
Usage
NewInput.MMC(lambda=0, mu=0, c=1, n=0, method=0)
Arguments
lambda |
arrival rate |
mu |
server service rate |
c |
number of servers |
n |
number of customers in the system from which you want to obtain its probabilities. Put n=0 for a idle probability (no customer present in the system or system idle). With n=-1, no probabilities are computed |
method |
method of computation of the probabilities of n number of customers in the system. With method=0, the exact results are calculated using the formal definition. With method=1, aproximate results are calculated using Stirling aproximation of factorials and logaritms. |
Details
Define the inputs of a new M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
Define the inputs of a new M/M/c/c queueing model
Description
Define the inputs of a new M/M/c/c queueing model
Usage
NewInput.MMCC(lambda=0, mu=0, c=1, method=1)
Arguments
lambda |
arrival rate |
mu |
server service rate |
c |
number of servers |
method |
with method = 0, the state probabilities are calculated using the formal definition (with overflow problems with factorials; with method = 1 (default), the truncated poisson distribution is used (recomended for professional use) |
Details
Define the inputs of a new M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Kobayashi2012] Hisashi Kobayashi, Brian L. Mark, William Turin (2012).
Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance.
Cambridge University Press.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
Define the inputs of a new M/M/c/K queueing model
Description
Define the inputs of a new M/M/c/K queueing model
Usage
NewInput.MMCK(lambda=0, mu=0, c=1, k=1)
Arguments
lambda |
arrival rate |
mu |
server service rate |
c |
number of servers |
k |
system capacity |
Details
Define the inputs of a new M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
Define the inputs of a new M/M/c/K/K queueing model
Description
Define the inputs of a new M/M/c/K/K queueing model
Usage
NewInput.MMCKK(lambda=0, mu=0, c=1, k=1, method=0)
Arguments
lambda |
arrival rate |
mu |
server service rate |
c |
number of servers |
k |
system capacity |
method |
method of computation of the probabilities of k (system capacity) customers down. With method=0, the exact results are calculated using the formal definition. With method=1, aproximate results are calculated using Stirling aproximation of factorials and logaritms. With method=2, Jain's Method [Jain2007], pag. 26 is used |
Details
Define the inputs of a new M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Jain2007] Joti Lal Jain, Sri Gopal Mohanty, Walter Bohm (2007).
A course on Queueing Models.
Chapman-Hall.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
Define the inputs of a new M/M/c/K/m queueing model
Description
Define the inputs of a new M/M/c/K/m queueing model
Usage
NewInput.MMCKM(lambda=0, mu=0, c=1, k=1, m=1, method=0)
Arguments
lambda |
arrival rate |
mu |
server service rate |
c |
number of servers |
k |
system capacity |
m |
poblation size. Please, observe that should be m >= k |
method |
method of computation of the probabilities of k (system capacity) customers down. With method=0, the exact results are calculated using the formal definition. With method=1, aproximate results are calculated using Stirling aproximation of factorials and logaritms. |
Details
Define the inputs of a new M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
Define the inputs of a new M/M/Infinite queueing model
Description
Define the inputs of a new M/M/Infinite queueing model
Usage
NewInput.MMInf(lambda=0, mu=0, n=0)
Arguments
lambda |
arrival rate |
mu |
server service rate |
n |
number of customers in the system from which you want to obtain its probabilities. Put n=0 for a idle probability (no customer present in the system or system idle). With n=-1, no probabilities are computed |
Details
Define the inputs of a new M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
Define the inputs of a new M/M/Infinite/K/K queueing model
Description
Define the inputs of a new M/M/Infinite/K/K queueing model
Usage
NewInput.MMInfKK(lambda=0, mu=0, k=1)
Arguments
lambda |
arrival rate |
mu |
server service rate |
k |
system capacity |
Details
Define the inputs of a new M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
Define the inputs of an Open Jackson Network
Description
Define the inputs of an Open Jackson Network
Usage
NewInput.OJN(prob=NULL, ...)
NewInput2.OJN(prob=NULL, nodes)
NewInput3.OJN(vLambda, numNodes, vType, vVisit, vService, vChannel)
Arguments
prob |
It is probability transition matrix or visit ratio vector. That is, the prob[i, j] is the transition probability of node i to node j, or prob[i] is the visit ratio to node i (the visit ratio values doesn't need to be probabilities, that is, a value greater than 1 can be used here. See the examples) |
... |
a separated by comma list of nodes of i_MM1, i_MMC or i_MMInf class |
nodes |
A list of nodes of i_MM1, i_MMC or i_MMInf class |
vLambda |
Vector with the arrivals rates to each node |
numNodes |
Number of nodes |
vType |
A vector with the type of server: "Q" for a queueing node, "D" for a delay node |
vVisit |
A vector with the visit ratios |
vService |
A vector with the services time of each node |
vChannel |
A vector with the number of channels of the node. The type of the server has to be "Q" to be inspected |
Details
Define the inputs of an Open Jackson Network. For a operational use, NewInput3.OJN is recommended. For a more academic use, NewInput.OJN or NewInput2.OJN is recommended. Please, note that the different ways to create the inputs for a Open Jackson Network are equivalent to each other, and no validation is done at this stage. The validation is done calling CheckInput function.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
## Using function NewInput2
## Not run:
ojn1 <- NewInput2.OJN(prob, list(n1, n2, n3, n4))
## End(Not run)
## Using visit ratios. Values taken from [Lazowska84], pag. 113.
## E[S] cpu = 0.005, Visit cpu = 121, D cpu = E[S] cpu * Visit cpu = 0.605
cpu <- NewInput.MM1(lambda=0.2, mu=1/0.005)
## E[S] disk1 = 0.030, Visit disk1 = 70, D disk1 = E[S] disk1 * Visit disk1 = 2.1
disk1 <- NewInput.MM1(lambda=0.2, mu=1/0.030)
## E[S] disk2 = 0.027, Visit disk2 = 50, D disk2 = E[S] disk2 * Visit disk2 = 1.35
disk2 <- NewInput.MM1(lambda=0.2, mu=1/0.027)
## In this example, to have the throughput per node, the visit ratios has to be given in this form.
## Please, don't use in the closed Jackson Network
visit <- c(121, 70, 50)
net <- NewInput.OJN(visit, cpu, disk1, disk2)
## Using NewInput3
vLambda <- c(0.2, 0.2, 0.2)
vService <- c(0.005, 0.030, 0.027)
numNodes <- 3
vType <- c("Q", "Q", "Q")
vChannel <- c(1, 1, 1)
net2 <- NewInput3.OJN(vLambda, numNodes, vType, visit, vService, vChannel)
Returns the probabilities of a queueing model (or network)
Description
Pn returns the probabilities that a queueing model (or network) has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it
Usage
Pn(x, ...)
Qn(x, ...)
Arguments
x |
For Pn, an object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_BnD. For Qn, an object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Pn returns the system probabilities of a queueing model (or network). Qn returns the probability that an effective arrival see n customers in the system
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Pn.o_MM1
Qn.o_MM1
Pn.o_MMC
Qn.o_MMC
Pn.o_MM1K
Qn.o_MM1K
Pn.o_MMCK
Qn.o_MMCK
Pn.o_MM1KK
Qn.o_MM1KK
Pn.o_MMCKK
Qn.o_MMCKK
Pn.o_MMCC
Qn.o_MMCC
Pn.o_MMCKM
Qn.o_MMCKM
Pn.o_MMInfKK
Qn.o_MMInfKK
Pn.o_MMInf
Qn.o_MMInf
Pn.o_OJN
Pn.o_BnD
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the probabilities
Pn(o_mm1)
Returns the probabilities of a generic Birth and Death process model
Description
Pn returns the probabilities that a generic Birth and Death process model has n customers.
Usage
## S3 method for class 'o_BnD'
Pn(x, ...)
Arguments
x |
a object of class o_BnD |
... |
aditional arguments |
Details
Pn returns the probabilities that a generic Birth and Death process model has n customers.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
## Build the model
o_BnD <- QueueingModel(i_BnD)
## Returns the probabilities
Pn(o_BnD)
## Simulating M/M/1
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
pn_bnd_mm1 <- Pn(QueueingModel(NewInput.BnD(lambda=lambda, mu=mu)))
pn_mm1 <- Pn(QueueingModel(NewInput.MM1(lambda=1/4, mu=1/3, n=200)))
## Simulating M/M/2
lambda <- rep(5, 200)
mu <- c(1*10, rep(2*10, 199))
pn_mmc <- Pn(QueueingModel(NewInput.MMC(lambda=5, mu=10, c=2, n=200, method=0)))
pn_bnd_mmc <- Pn(QueueingModel(NewInput.BnD(lambda=lambda, mu=mu)))
## Simulating M/M/1/K/K
lambda <- c(2*0.25, 0.25)
mu <- rep(4, 2)
pn_mm1kk <- Pn(QueueingModel(NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)))
pn_bnd <- Pn(QueueingModel(NewInput.BnD(lambda=lambda, mu=mu)))
Returns the probabilities of a M/M/1 queueing model
Description
Pn returns the probabilities that a M/M/1 queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MM1'
Pn(x, ...)
## S3 method for class 'o_MM1'
Qn(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/1 queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers. By the PASTA property, both probabilities has to be the same.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the probabilities
Pn(o_mm1)
Qn(o_mm1)
Returns the probabilities of a M/M/1/K queueing model
Description
Pn returns the probabilities that a M/M/1/K queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MM1K'
Pn(x, ...)
## S3 method for class 'o_MM1K'
Qn(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/1/K queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the probabilities
Pn(o_mm1k)
Qn(o_mm1k)
Returns the probabilities of a M/M/1/K/K queueing model
Description
Pn eeturns the probabilities of a M/M/1/K/K queueing model Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MM1KK'
Pn(x, ...)
## S3 method for class 'o_MM1KK'
Qn(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/1/K/K queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the probabilities
Pn(o_mm1kk)
Qn(o_mm1kk)
Returns the probabilities of a M/M/c queueing model
Description
Pn returns the probabilities that a M/M/c queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MMC'
Pn(x, ...)
## S3 method for class 'o_MMC'
Qn(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/c queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers. By the PASTA property, both probabilities has to be the same.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the probabilities
Pn(o_mmc)
Qn(o_mmc)
Returns the probabilities of a M/M/c/c queueing model
Description
Pn returns the probabilities that a M/M/c/c queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MMCC'
Pn(x, ...)
## S3 method for class 'o_MMCC'
Qn(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/c/c queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the probabilities
Pn(o_mmcc)
Qn(o_mmcc)
Returns the probabilities of a M/M/c/K queueing model
Description
Pn returns the probabilities that a M/M/c/K queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MMCK'
Pn(x, ...)
## S3 method for class 'o_MMCK'
Qn(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/c/K queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the probabilities
Pn(o_mmck)
Qn(o_mmck)
Returns the probabilities of a M/M/c/K/K queueing model
Description
Pn returns the probabilities that a M/M/c/K/K queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MMCKK'
Pn(x, ...)
## S3 method for class 'o_MMCKK'
Qn(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/c/K/K queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the parameters
Pn(o_mmckk)
Qn(o_mmckk)
Returns the probabilities of a M/M/c/K/m queueing model
Description
Pn returns the probabilities that a M/M/c/K/m queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MMCKM'
Pn(x, ...)
## S3 method for class 'o_MMCKM'
Qn(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/c/K/m queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the probabilities
Pn(o_mmckm)
Qn(o_mmckm)
Returns the probabilities of a M/M/Infinite queueing model
Description
Pn returns the probabilities that a M/M/Infinite queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MMInf'
Pn(x, ...)
## S3 method for class 'o_MMInf'
Qn(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/Infinite queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers. By the PASTA property, both probabilities has to be the same.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the probabilities
Pn(o_mminf)
Qn(o_mminf)
Returns the probabilities of a M/M/Infinite/K/K queueing model
Description
Pn returns the probabilities that a M/M/Infinite/K/K queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers in it.
Usage
## S3 method for class 'o_MMInfKK'
Pn(x, ...)
## S3 method for class 'o_MMInfKK'
Qn(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Pn returns the probabilities that a M/M/Infinite/K/K queueing model has n customers.
Qn returns the probabilities that an arrival that enter the system see n customers.
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the probabilities
Pn(o_MMInfKK)
Qn(o_MMInfKK)
Returns vector of the probabilities of each node (server) of an Open Jackson Network
Description
Returns vector of the probabilities of each node (server) of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
Pn(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Returns vector of the probabilities of each node (server) of an Open Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
Pn(o_ojn)
Generic S3 method to build a queueing model (or network)
Description
Generic S3 method to build a queueing model (or network)
Usage
QueueingModel(x, ...)
Arguments
x |
a object of class i_MM1, i_MMC, i_MM1K, i_MMCK, i_MM1KK, i_MMCKK, i_MMCC, i_MMCKM, i_MMInfKK, i_MMInf, i_OJN, i_MCON |
... |
aditional arguments |
Details
Generic S3 method to build a queueing model (or network)
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
QueueingModel.i_MM1
QueueingModel.i_MMC
QueueingModel.i_MM1K
QueueingModel.i_MMCK
QueueingModel.i_MM1KK
QueueingModel.i_MMCKK
QueueingModel.i_MMCC
QueueingModel.i_MMCKM
QueueingModel.i_MMInfKK
QueueingModel.i_MMInf
QueueingModel.i_OJN
QueueingModel.i_MCON
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
QueueingModel(i_mm1)
Builds a a generic Birth and Death process model
Description
Builds a a generic Birth and Death process model
Usage
## S3 method for class 'i_BnD'
QueueingModel(x, ...)
Arguments
x |
a object of class i_BnD |
... |
aditional arguments |
Details
Build a generic Birth and Death process model. It also checks the input params calling the CheckInput.i_BnD
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
## Build the model
o_BnD <- QueueingModel(i_BnD)
Builds one Closed Jackson Network
Description
Builds one Closed Jackson Network
Usage
## S3 method for class 'i_CJN'
QueueingModel(x, ...)
Arguments
x |
a object of class i_CJN |
... |
aditional arguments |
Details
Build one Closed Jackson Network. It also checks the input params calling the CheckInput.i_CJN
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
m_cjn1
Builds one MultiClass Closed Network
Description
Builds one MultiClass Closed Network
Usage
## S3 method for class 'i_MCCN'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MCCN |
... |
aditional arguments |
Details
Build one MultiClass Closed Network. It also checks the input params calling the CheckInput.i_MCCN
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
o_MCCN1
Builds one MultiClass Mixed Network
Description
Builds one MultiClass Mixed Network
Usage
## S3 method for class 'i_MCMN'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MCMN |
... |
aditional arguments |
Details
Build one MultiClass Mixed Network. It also checks the input params calling the CheckInput.i_MCMN
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
o_mcmn1
Builds one MultiClass Open Network
Description
Builds one MultiClass Open Network
Usage
## S3 method for class 'i_MCON'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MCON |
... |
aditional arguments |
Details
Build one MultiClass Open Network. It also checks the input params calling the CheckInput.i_MCON
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
o_mcon1
Builds a M/M/1 queueing model
Description
Builds a M/M/1 queueing model
Usage
## S3 method for class 'i_MM1'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MM1 |
... |
aditional arguments |
Details
Build a M/M/1 queueing model. It also checks the input params calling the CheckInput.i_MM1
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
QueueingModel(i_mm1)
Builds a M/M/1/K queueing model
Description
Builds a M/M/1/K queueing model
Usage
## S3 method for class 'i_MM1K'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MM1K |
... |
aditional arguments |
Details
Build a M/M/1/K queueing model. It also checks the input params calling the CheckInput.i_MM1K
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
QueueingModel(i_mm1k)
Builds a M/M/1/K/K queueing model
Description
Builds a M/M/1/K/K queueing model
Usage
## S3 method for class 'i_MM1KK'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MM1KK |
... |
aditional arguments |
Details
Build a M/M/1/K/K queueing model. It also checks the input params calling the CheckInput.i_MM1KK
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
QueueingModel(i_mm1kk)
Builds a M/M/c queueing model
Description
Builds a M/M/c queueing model
Usage
## S3 method for class 'i_MMC'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MMC |
... |
aditional arguments |
Details
Build a M/M/c/ queueing model. It also checks the input params calling the CheckInput.i_MMC
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
QueueingModel(i_mmc)
Builds a M/M/c/c queueing model
Description
Builds a M/M/c/c queueing model
Usage
## S3 method for class 'i_MMCC'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MMCC |
... |
aditional arguments |
Details
Build a M/M/c/c queueing model. It also checks the input params calling the CheckInput.i_MMCC
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
QueueingModel(i_mmcc)
Builds a M/M/c/K queueing model
Description
Builds a M/M/c/K queueing model
Usage
## S3 method for class 'i_MMCK'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MMCK |
... |
aditional arguments |
Details
Build a M/M/c/K queueing model. It also checks the input params calling the CheckInput.i_MMCK
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
QueueingModel(i_mmck)
Builds a M/M/c/K/K queueing model
Description
Builds a M/M/c/K/K queueing model
Usage
## S3 method for class 'i_MMCKK'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MMCKK |
... |
aditional arguments |
Details
Build a M/M/c/K/K queueing model. It also checks the input params calling the CheckInput.i_MMCKK
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
QueueingModel(i_mmckk)
Builds a M/M/c/K/m queueing model
Description
Builds a M/M/c/K/m queueing model
Usage
## S3 method for class 'i_MMCKM'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MMCKM |
... |
aditional arguments |
Details
Build a M/M/c/K/m queueing model. It also checks the input params calling the CheckInput.i_MMCKM
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
QueueingModel(i_mmckm)
Builds a M/M/Infinite queue model
Description
Builds a M/M/Infinite queue model
Usage
## S3 method for class 'i_MMInf'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MMInf |
... |
aditional arguments |
Details
Build a M/M/Infinite model. It also checks the input params calling the CheckInput.i_MMInf
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
QueueingModel(i_mminf)
Builds a M/M/Infinite/K/K queueing model
Description
Builds a M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'i_MMInfKK'
QueueingModel(x, ...)
Arguments
x |
a object of class i_MMInfKK |
... |
aditional arguments |
Details
Build a M/M/Infinite/K/K queueing model. It also checks the input params calling the CheckInput.i_MMInfKK
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
QueueingModel(i_MMInfKK)
Builds one Open Jackson Network
Description
Builds one Open Jackson Network
Usage
## S3 method for class 'i_OJN'
QueueingModel(x, ...)
Arguments
x |
a object of class i_OJN |
... |
aditional arguments |
Details
Build one Open Jackson Network. It also checks the input params calling the CheckInput.i_OJN
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
m_ojn1 <- QueueingModel(ojn1)
m_ojn1
Reports the server use of a queueing model
Description
Reports the server use of a queueing model)
Usage
RO(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Reports the server use of a queueing model (or network)
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
RO.o_MM1
RO.o_MMC
RO.o_MM1K
RO.o_MMCK
RO.o_MM1KK
RO.o_MMCKK
RO.o_MMCC
RO.o_MMCKM
RO.o_MMInfKK
RO.o_MMInf
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the use of the server
RO(o_mm1)
Reports the server use of a M/M/1 queueing model
Description
Reports the server use of a M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
RO(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Reports the server use of a M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the use of the server
RO(o_mm1)
Reports the server use of a M/M/1/K queueing model
Description
Reports the server use of a M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
RO(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Reports the server use of a M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Report the use of the server
RO(o_mm1k)
Reports the server use of a M/M/1/K/K queueing model
Description
Reports the server use of a M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
RO(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Reports the server use of a M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Report the use of the server
RO(o_mm1kk)
Reports the server use of a M/M/c queueing model
Description
Reports the server use of a M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
RO(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Reports the server use of a M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the use of the server
RO(o_mmc)
Reports the server use of a M/M/c/c queueing model
Description
Reports the server use of a M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
RO(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Reports the server use of a M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Report the use of the server
RO(o_mmcc)
Reports the server use of a M/M/c/K queueing model
Description
Reports the server use of a M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
RO(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Reports the server use of a M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the use of the server
RO(o_mmck)
Reports the server use of a M/M/c/K/K queueing model
Description
Reports the server use of a M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
RO(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Reports the server use of a M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the use of the server
RO(o_mmckk)
Reports the server use of a M/M/c/K/m queueing model
Description
Reports the server use of a M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
RO(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Reports the server use of a M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the use of the server
RO(o_mmckm)
Reports the server use of a M/M/Infinite queueing model
Description
Reports the server use of a M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
RO(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Reports the server use of a M/M/Infinite queueing model. It should be noted that in this model, the RO parameter has a different meaning, its the traffic intensity and it coincides exactly with the average number of customers in the system (L)
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
QueueingModel.i_MMInf
L.o_MMInf
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the use of the server
RO(o_mminf)
Reports the server use of a M/M/Infinite/K/K queueing model
Description
Reports the server use of a M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
RO(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Reports the server use of a M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the use of the server
RO(o_MMInfKK)
Reports a matrix with the use of class i in each node (server) j in a MultiClass Queueing Network
Description
Reports a matrix with the use of class i in each node (server) j in a MultiClass Queueing Network
Usage
ROck(x, ...)
Arguments
x |
a object of class o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Reports a matrix with the use of class i in each node (server) j in a MultiClass Queueing Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos CaballeROk, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial CentROk de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
ROck.o_MCON
ROck.o_MCCN
ROck.o_MCMN
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
ROck(o_MCCN1)
Reports a matrix with the use of class i in each node (server) j in a MultiClass Closed Network
Description
Reports a matrix with the use of class i in each node (server) j in a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
ROck(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Reports a matrix with the use of class i in each node (server) j in a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
ROck(o_MCCN1)
Reports a matrix with the use of class i in each node (server) j in a MultiClass Mixed Network
Description
Reports a matrix with the use of class i in each node (server) j in a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
ROck(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Reports a matrix with the use of class i in each node (server) j in a
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
ROck(o_mcmn1)
Reports a matrix with the use of class i in each node (server) j in a MultiClass Open Network
Description
Reports a matrix with the use of class i in each node (server) j in a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
ROck(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Reports a matrix with the use of class i in each node (server) j in a
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
ROck(o_mcon1)
Reports a vector with each node (server) use of a queueing network
Description
Reports a vector with each node (server) use of a queueing network
Usage
ROk(x, ...)
Arguments
x |
a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Reports a vector with each node (server) use of a queueing network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos CaballeROk, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial CentROk de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
ROk.o_OJN
ROk.o_CJN
ROk.o_MCON
ROk.o_MCCN
ROk.o_MCMN
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
ROk(o_MCCN1)
Reports a vector with each node (server) use of a Closed Jackson Network
Description
Reports a vector with each node (server) use of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
ROk(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Reports a vector with each node (server) use of a Closed Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
ROk(m_cjn1)
Reports a vector with each node (server) use of a MultiClass Closed Network
Description
Reports a vector with each node (server) use of a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
ROk(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Reports a vector with each node (server) use of a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
ROk(o_MCCN1)
Reports a vector with each node (server) use of a MultiClass Mixed Network
Description
Reports a vector with each node (server) use of a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
ROk(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Reports a vector with each node (server) use of a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
ROk(o_mcmn1)
Reports a vector with each node (server) use of a MultiClass Open Network
Description
Reports a vector with each node (server) use of a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
ROk(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Reports a vector with each node (server) use of a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
ROk(o_mcon1)
Reports a vector with each node (server) use of an Open Jackson Network
Description
Reports a vector with each node (server) use of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
ROk(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Reports a vector with each node (server) use of an Open Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
ROk(o_ojn)
Reports the results of a queueing model
Description
Reports the results of a queueing model.
Usage
Report(x, ...)
Arguments
x |
i_MM1, i_MMC, i_MM1K, i_MMCK, i_MM1KK, i_MMCKK, i_MMCC, i_MMCKM, i_MMInfKK, i_MMInf, i_OJN, i_MCON |
... |
aditional arguments |
Details
Generic S3 method to report a queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the results
Report(o_mm1)
Reports the results of a M/M/1 queueing model
Description
Reports the results of a M/M/1 queueing model.
Usage
## S3 method for class 'o_BnD'
Report(x, ...)
Arguments
x |
a object of class o_BnD |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
## Build the model
o_BnD <- QueueingModel(i_BnD)
## Report the results
Report(o_BnD)
Reports the results of a Closed Jackson Network
Description
Reports the results of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
Report(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Generates a report of the queueing network received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
Report(m_cjn1)
Reports the results of a MultiClass Closed Network
Description
Reports the results of a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Report(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Generates a report of the queueing network received as parameter
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Report(o_MCCN1)
Reports the results of a MultiClass Mixed Network
Description
Reports the results of a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Report(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Generates a report of the queueing network received as parameter
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Report(o_mcmn1)
Reports the results of a MultiClass Open Network
Description
Reports the results of a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Report(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Generates a report of the queueing network received as parameter
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Report(o_mcon1)
Reports the results of a M/M/1 queueing model
Description
Reports the results of a M/M/1 queueing model.
Usage
## S3 method for class 'o_MM1'
Report(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the results
Report(o_mm1)
Reports the results of a M/M/1/K queueing model
Description
Reports the results of a M/M/1/K queueing model.
Usage
## S3 method for class 'o_MM1K'
Report(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Report the results
Report(o_mm1k)
Reports the results of a M/M/1/K/K queueing model
Description
Reports the results of a M/M/1/K/K queueing model.
Usage
## S3 method for class 'o_MM1KK'
Report(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Report the results
Report(o_mm1kk)
Reports the results of a M/M/c queueing model
Description
Reports the results of a M/M/c queueing model.
Usage
## S3 method for class 'o_MMC'
Report(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the results
Report(o_mmc)
Reports the results of a M/M/c/c queueing model
Description
Reports the results of a M/M/c/c queueing model.
Usage
## S3 method for class 'o_MMCC'
Report(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Report the results
Report(o_mmcc)
Reports the results of a M/M/c/K queueing model
Description
Reports the results of a M/M/c/K queueing model.
Usage
## S3 method for class 'o_MMCK'
Report(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the results
Report(o_mmck)
Reports the results of a M/M/c/K/K queueing model
Description
Reports the results of a M/M/c/K/K queueing model.
Usage
## S3 method for class 'o_MMCKK'
Report(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the results
Report(o_mmckk)
Reports the results of a M/M/c/K/m queueing model
Description
Reports the results of a M/M/c/K/m queueing model.
Usage
## S3 method for class 'o_MMCKM'
Report(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the results
Report(o_mmckm)
Reports the results of a M/M/Infinite queueing model
Description
Reports the results of a M/M/Infinite queueing model.
Usage
## S3 method for class 'o_MMInf'
Report(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the results
Report(o_mminf)
Reports the results of a M/M/Infinite/K/K queueing model
Description
Reports the results of a M/M/Infinite/K/K queueing model.
Usage
## S3 method for class 'o_MMInfKK'
Report(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Generates a report of the queueing model received as parameter
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the results
Report(o_MMInfKK)
Reports the results of an Open Jackson Network
Description
Reports the results of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
Report(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Generates a report of the queueing network received as parameter
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
o_ojn <- QueueingModel(i_ojn)
Report(o_ojn)
Returns the saturation point of a queueing model
Description
Returns the saturation point of a queueing model
Usage
SP(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the saturation point of a queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=4, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the saturation point
SP(o_mm1kk)
Returns the saturation point of a M/M/1/K/K queueing model
Description
Returns the saturation point, or the maximum number of customers that the M/M/1/K/K queueing model can support with no interference or syncronization between themselves
Usage
## S3 method for class 'o_MM1KK'
SP(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
The value returned is the optimal number of customers of a M/M/1/K/K queueing model. It coincides with the inverse of the serialization parameter of Amdahl's Law. That is, the value which converges the speedup func(k) = k/(1 + ser * (k-1)). It makes sense, because the saturation point is the maximun value in which no syncronization happens.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=4, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the saturation point
SP(o_mm1kk)
Throughput of a queueing model (or network)
Description
Returns the throughput of a queueing model (or network)
Usage
Throughput(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Returns the throughput of a queueing model (or network)
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Throughput.o_MM1
Throughput.o_MMC
Throughput.o_MM1K
Throughput.o_MMCK
Throughput.o_MM1KK
Throughput.o_MMCKK
Throughput.o_MMCC
Throughput.o_MMCKM
Throughput.o_MMInfKK
Throughput.o_MMInf
Throughput.o_OJN
Throughput.o_CJN
Throughput.o_MCON
Throughput.o_MCCN
Throughput.o_MCMN
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Throughput
Throughput(o_mm1)
Reports the network throughput of a Closed Jackson Network
Description
Reports the network throughput of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
Throughput(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Reports the network throughput of a Closed Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.OJN
, CheckInput.i_CJN
, QueueingModel.i_CJN
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
Throughput(m_cjn1)
Reports the throughput of a MultiClass Closed Network
Description
Reports the throughput of a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Throughput(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Reports the throughput of a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCCN
, CheckInput.i_MCCN
, QueueingModel.i_MCCN
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Throughput(o_MCCN1)
Reports the throughput of a MultiClass Mixed Network
Description
Reports the throughput of a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Throughput(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Reports the throughput of a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCMN
, CheckInput.i_MCMN
, QueueingModel.i_MCMN
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Throughput(o_mcmn1)
Reports the throughput of a MultiClass Open Network
Description
Reports the throughput of a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Throughput(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Reports the throughput of a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCON
, CheckInput.i_MCON
, QueueingModel.i_MCON
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughput(o_mcon1)
Throughput of a M/M/1 queueing model
Description
Returns the throughput of a M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
Throughput(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the throughput of a M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.MM1
, CheckInput.i_MM1
, QueueingModel.i_MM1
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Throughput
Throughput(o_mm1)
Throughput of a M/M/1/K queueing model
Description
Returns the throughput of a M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
Throughput(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the throughput of a M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.MM1K
, CheckInput.i_MM1K
, QueueingModel.i_MM1K
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mmck <- QueueingModel(i_mm1k)
## Throughput
Throughput(o_mmck)
Throughput of a M/M/1/K/K queueing model
Description
Returns the throughput of a M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
Throughput(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the throughput of a M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.MM1KK
, CheckInput.i_MM1KK
, QueueingModel.i_MM1KK
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_MM1KKk <- QueueingModel(i_mm1kk)
## Throughput
Throughput(o_MM1KKk)
Throughput of a M/M/c queueing model
Description
Returns the throughput of a M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
Throughput(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the throughput of a M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.MMC
, CheckInput.i_MMC
, QueueingModel.i_MMC
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Throughput
Throughput(o_mmc)
Throughput of a M/M/c/c queueing model
Description
Returns the throughput of a M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
Throughput(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the throughput of a M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.MMCC
, CheckInput.i_MMCC
, QueueingModel.i_MMCC
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Throughput
Throughput(o_mmcc)
Throughput of a M/M/c/K queueing model
Description
Returns the throughput of a M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
Throughput(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the throughput of a M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.MMCK
, CheckInput.i_MMCK
, QueueingModel.i_MMCK
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Throughput
Throughput(o_mmck)
Throughput of a M/M/c/K/K queueing model
Description
Returns the throughput of a M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
Throughput(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the throughput of a M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.MMCKK
, CheckInput.i_MMCKK
, QueueingModel.i_MMCKK
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## build the model
o_mmckk <- QueueingModel(i_mmckk)
## Throughput
Throughput(o_mmckk)
Throughput of a M/M/c/K/m queueing model
Description
Returns the throughput of a M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
Throughput(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the throughput of a M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.MMCKM
, CheckInput.i_MMCKM
, QueueingModel.i_MMCKM
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Throughput
Throughput(o_mmckm)
Throughput of a M/M/Infinite queueing model
Description
Returns the throughput of a M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
Throughput(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the throughput of a M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.MMInf
, CheckInput.i_MMInf
, QueueingModel.i_MMInf
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Throughput
Throughput(o_mminf)
Throughput of a M/M/Infinite/K/K queueing model
Description
Returns the throughput of a M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
Throughput(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the throughput of a M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
NewInput.MMInfKK
, CheckInput.i_MMInfKK
, QueueingModel.i_MMInfKK
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Throughput
Throughput(o_MMInfKK)
Reports the throughput of an Open Jackson Network
Description
Reports the throughput of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
Throughput(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Reports the throughput of an Open Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.OJN
, CheckInput.i_OJN
, QueueingModel.i_OJN
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
Throughput(o_ojn)
Reports a vector with each class throughput in a multiclass queueing network
Description
Reports a vector with each class throughput in a multiclass queueing network
Usage
Throughputc(x, ...)
Arguments
x |
a object of class o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Reports a vector with each class throughput in a multiclass queueing network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Throughputc.o_MCON
Throughputc.o_MCCN
Throughputc.o_MCCN
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputc(o_mcon1)
Reports a vector with each class throughput in a MultiClass Closed Network
Description
Reports a vector with each class throughput in a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Throughputc(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Reports a vector with each class throughput in a MultiClass Closed Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCCN
, CheckInput.i_MCCN
, QueueingModel.i_MCCN
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Throughputc(o_MCCN1)
Reports a vector with each class throughput in a MultiClass Mixed Network
Description
Reports a vector with each class throughput in a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Throughputc(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Reports a vector with each class throughput in a MultiClass Mixed Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCMN
, CheckInput.i_MCMN
, QueueingModel.i_MCMN
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Throughputc(o_mcmn1)
Reports a vector with each class throughput in a MultiClass Open Network
Description
Reports a vector with each class throughput in a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Throughputc(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Reports a vector with each class throughput in a MultiClass Open Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCON
, CheckInput.i_MCON
, QueueingModel.i_MCON
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputc(o_mcon1)
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Network
Description
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Network
Usage
Throughputck(x, ...)
Arguments
x |
a object of class o_MCON, o_MCCN |
... |
aditional arguments |
Details
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Throughputck.o_MCON
Throughputck.o_MCCN
Throughputck.o_MCMN
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputck(o_mcon1)
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Closed Network
Description
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Throughputck(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Closed Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCCN
, CheckInput.i_MCCN
, QueueingModel.i_MCCN
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Throughputck(o_MCCN1)
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Mixed Network
Description
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Throughputck(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Mixed Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCMN
, CheckInput.i_MCMN
, QueueingModel.i_MCMN
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Throughputck(o_mcmn1)
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Open Network
Description
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Throughputck(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Open Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCON
, CheckInput.i_MCON
, QueueingModel.i_MCON
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputck(o_mcon1)
Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network
Description
Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network
Usage
Throughputcn(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Throughputcn(o_MCCN1)
Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network
Description
Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network
Usage
## S3 method for class 'o_MCCN'
Throughputcn(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCCN
, CheckInput.i_MCCN
, QueueingModel.i_MCCN
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Throughputcn(o_MCCN1)
Reports a vector with each node (server) throughput of a queueing network
Description
Reports a vector with each node (server) throughput of a queueing network
Usage
Throughputk(x, ...)
Arguments
x |
a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Reports a vector with each node (server) throughput of a queueing network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Throughputk.o_OJN
Throughputk.o_CJN
Throughputk.o_MCON
Throughputk.o_MCCN
Throughputk.o_MCMN
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputk(o_mcon1)
Reports a vector with each node (server) throughput of a Closed Jackson Network
Description
Reports a vector with each node (server) throughput of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
Throughputk(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Reports a vector with each node (server) throughput of a Closed Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.CJN
, CheckInput.i_CJN
, QueueingModel.i_CJN
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
Throughputk(m_cjn1)
Reports a vector with each node (server) throughput of a MultiClass Closed Network
Description
Reports a vector with each node (server) throughput of a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Throughputk(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Reports a vector with each node (server) throughput of a MultiClass Closed Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCCN
, CheckInput.i_MCCN
, QueueingModel.i_MCCN
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Throughputk(o_MCCN1)
Reports a vector with each node (server) throughput of a MultiClass Mixed Network
Description
Reports a vector with each node (server) throughput of a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Throughputk(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Reports a vector with each node (server) throughput of a MultiClass Mixed Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCMN
, CheckInput.i_MCMN
, QueueingModel.i_MCMN
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Throughputk(o_mcmn1)
Reports a vector with each node (server) throughput of a MultiClass Open Network
Description
Reports a vector with each node (server) throughput of a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Throughputk(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Reports a vector with each node (server) throughput of a MultiClass Open Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
NewInput.MCON
, CheckInput.i_MCON
, QueueingModel.i_MCON
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputk(o_mcon1)
Reports a vector with each node (server) throughput of an Open Jackson Network
Description
Reports a vector with each node (server) throughput of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
Throughputk(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Reports a vector with each node (server) throughput of an Open Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.OJN
, CheckInput.i_OJN
, QueueingModel.i_OJN
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
Throughputk(o_ojn)
Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Network
Description
Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Network
Usage
Throughputn(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
Throughputn(m_cjn1)
Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Jackson Network
Description
Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
Throughputn(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
NewInput.CJN
, CheckInput.i_CJN
, QueueingModel.i_CJN
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
Throughputn(m_cjn1)
Returns the variance of the number of customers in a queueing model (or network)
Description
Returns the variance of the number of customers in a queueing model (or network)
Usage
VN(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Returns the variance of the number of customers in a queueing model (or network)
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
VN.o_MM1
VN.o_MMC
VN.o_MMCC
VN.o_MMInf
VN.o_MMInfKK
VN.o_MM1K
VN.o_MMCK
VN.o_MM1KK
VN.o_MMCKK
VN.o_MMCKM
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance
VN(o_mm1)
Returns the variance of the number of customers in the M/M/1 queueing model
Description
Returns the variance of the number of customers in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
VN(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/1 queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance
VN(o_mm1)
Returns the variance of the number of customers in the M/M/1/K queueing model
Description
Returns the variance of the number of customers in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
VN(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/1/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VN(o_mm1k)
Returns the variance of the number of customers in the M/M/1/K/K queueing model
Description
Returns the variance of the number of customers in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
VN(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/1/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the variance
VN(o_mm1kk)
Returns the variance of the number of customers in the M/M/c queueing model
Description
Returns the variance of the number of customers in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
VN(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/c queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance
VN(o_mmc)
Returns the variance of the number of customers in the M/M/c/c queueing model
Description
Returns the variance of the number of customers in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
VN(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/c/c queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VN(o_mmcc)
Returns the variance of the number of customers in the M/M/c/K queueing model
Description
Returns the variance of the number of customers in the M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
VN(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/c/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the variance
VN(o_mmck)
Returns the variance of the number of customers in the M/M/c/K/K queueing model
Description
Returns the variance of the number of customers in the M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
VN(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/c/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the variance
VN(o_mmckk)
Returns the variance of the number of customers in the M/M/c/K/m queueing model
Description
Returns the variance of the number of customers in the M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
VN(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/c/K/m queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the variance
VN(o_mmckm)
Returns the variance of the number of customers in the M/M/Infinite queueing model
Description
Returns the variance of the number of customers in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
VN(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/Infinite queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VN(o_mminf)
Returns the variance of the number of customers in the M/M/Infinite/K/K queueing model
Description
Returns the variance of the number of customers in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
VN(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the M/M/Infinite/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the variance
VN(o_MMInfKK)
Returns the variance of the number of customers in the queue in a queueing model
Description
Returns the variance of the number of customers in the queue in a queueing model
Usage
VNq(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in a queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
VNq.o_MM1
VNq.o_MM1
VNq.o_MMCC
VNq.o_MMInf
VNq.o_MMInfKK
VNq.o_MM1K
VNq.o_MMCK
VNq.o_MM1KK
VNq.o_MMCKK
VNq.o_MMCKM
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance
VNq(o_mm1)
Returns the variance of the number of customers in the queue in the M/M/1 queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
VNq(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/1 queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance
VNq(o_mm1)
Returns the variance of the number of customers in the queue in the M/M/1/K queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
VNq(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/1/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VNq(o_mm1k)
Returns the variance of the number of customers in the queue in the M/M/1/K/K queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
VNq(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/1/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the variance
VNq(o_mm1kk)
Returns the variance of the number of customers in the queue in the M/M/c queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
VNq(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/c queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance
VNq(o_mmc)
Returns the variance of the number of customers in the queue in the M/M/c/c queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
VNq(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/c/c queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VNq(o_mmcc)
Returns the variance of the number of customers in the queue in the M/M/c/K queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
VNq(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/c/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the variance
VNq(o_mmck)
Returns the variance of the number of customers in the queue in the M/M/c/K/K queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
VNq(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/c/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the variance
VNq(o_mmckk)
Returns the variance of the number of customers in the queue in the M/M/c/K/m queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
VNq(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/c/K/m queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the variance
VNq(o_mmckm)
Returns the variance of the number of customers in the queue in the M/M/Infinite queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
VNq(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/Infinite queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VNq(o_mminf)
Returns the variance of the number of customers in the queue in the M/M/Infinite/K/K queueing model
Description
Returns the variance of the number of customers in the queue in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
VNq(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the variance of the number of customers in the queue in the M/M/Infinite/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the VNq
VNq(o_MMInfKK)
Returns the variance of the time spend in a queueing model (or network)
Description
Returns the variance of the time spend in a queueing model (or network)
Usage
VT(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Returns the variance of the time spend in a queueing model (or network)
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
VT.o_MM1
VT.o_MMC
VT.o_MMCC
VT.o_MMInf
VT.o_MMInfKK
VT.o_MM1K
VT.o_MM1KK
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in the system
VT(o_mm1)
Returns the variance of the time spend in the M/M/1 queueing model
Description
Returns the variance of the time spend in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
VT(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the variance of the time spend in the M/M/1 queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in the system
VT(o_mm1)
Returns the variance of the time spend in the M/M/1/K queueing model
Description
Returns the variance of the time spend in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
VT(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the variance of the time spend in the M/M/1/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VT(o_mm1k)
Returns the variance of the time spend in the M/M/1/K/K queueing model
Description
Returns the variance of the time spend in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
VT(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the variance of the time spend in the M/M/1/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the variance
VT(o_mm1kk)
Returns the variance of the time spend in the M/M/c queueing model
Description
Returns the variance of the time spend in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
VT(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the variance of the time spend in the M/M/c queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance of the time spend in the system
VT(o_mmc)
Returns the variance of the time spend in the M/M/c/c queueing model
Description
Returns the variance of the time spend in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
VT(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the variance of the time spend in the M/M/c/c queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VT(o_mmcc)
Returns the variance of the time spend in the M/M/Infinite queueing model
Description
Returns the variance of the time spend in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
VT(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the the variance of the time spend in the M/M/Infinite queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VT(o_mminf)
Returns the variance of the time spend in the M/M/Infinite/K/K queueing model
Description
Returns the variance of the time spend in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
VT(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the variance of the time spend in the M/M/Infinite/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the variance
VT(o_MMInfKK)
Returns the variance of the time spend in queue in a queueing model
Description
Returns the variance of the time spend in queue in a queueing model
Usage
VTq(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in a queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
VTq.o_MM1
VTq.o_MMC
VTq.o_MMCC
VTq.o_MMInf
VTq.o_MMInfKK
VTq.o_MM1K
VTq.o_MMCK
VTq.o_MM1KK
VTq.o_MMCKK
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in queue
VTq(o_mm1)
Returns the variance of the time spend in queue in the M/M/1 queueing model
Description
Returns the variance of the time spend in queue in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
VTq(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in the M/M/1 queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in queue
VTq(o_mm1)
Returns the variance of the time spend in queue in the M/M/1/K queueing model
Description
Returns the variance of the time spend in queue in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
VTq(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in the M/M/1/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VTq(o_mm1k)
Returns the variance of the time spend in queue in the M/M/1/K/K queueing model
Description
Returns the variance of the time spend in queue in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
VTq(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in the M/M/1/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the VTq
VTq(o_mm1kk)
Returns the variance of the time spend in queue in the M/M/c queueing model
Description
Returns the variance of the time spend in queue in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
VTq(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in the M/M/c queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance of the time spend in queue
VTq(o_mmc)
Returns the variance of the time spend in queue in the M/M/c/c queueing model
Description
Returns the variance of the time spend in queue in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
VTq(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in the M/M/c/c queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VTq(o_mmcc)
Returns the variance of the time spend in queue in the M/M/c/K queueing model
Description
Returns the variance of the time spend in queue in the M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
VTq(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in the M/M/c/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the variance
VTq(o_mmck)
Returns the variance of the time spend in queue in the M/M/c/K/K queueing model
Description
Returns the variance of the time spend in queue in the M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
VTq(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in the M/M/c/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the variance
VTq(o_mmckk)
Returns the variance of the time spend in queue in the M/M/Infinite queueing model
Description
Returns the variance of the time spend in queue in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
VTq(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in the M/M/Infinite queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VTq(o_mminf)
Returns the variance of the time spend in queue in the M/M/Infinite/K/K queueing model
Description
Returns the variance of the time spend in queue in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
VTq(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the variance of the time spend in queue in the M/M/Infinite/K/K queueing model
References
[Sztrik2012] Dr. Janos Sztrik (2012).
Basic Queueing Theory.
University of Debrecen, Faculty of Informatics.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the variance
VTq(o_MMInfKK)
Returns the mean time spend in a queueing model (or network)
Description
Returns the mean time spend in a queueing model (or network)
Usage
W(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Returns the mean time spend in a queueing model (or network)
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
W.o_MM1
W.o_MMC
W.o_MM1K
W.o_MMCK
W.o_MM1KK
W.o_MMCKK
W.o_MMCC
W.o_MMCKM
W.o_MMInfKK
W.o_MMInf
W.o_OJN
W.o_MCON
W.o_MCCN
W.o_MCMN
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the W
W(o_mm1)
Returns the mean time spend in a Closed Jackson Network
Description
Returns the mean time spend in a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
W(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Returns the mean time spend in a Closed Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
W(m_cjn1)
Returns the mean time spend in a MultiClass Closed Network
Description
Returns the mean time spend in a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
W(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Returns the mean time spend in a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
W(o_MCCN1)
Returns the mean time spend in a MultiClass Mixed Network
Description
Returns the mean time spend in a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
W(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Returns the mean time spend in a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
W(o_mcmn1)
Returns the mean time spend in a MultiClass Open Network
Description
Returns the mean time spend in a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
W(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Returns the mean time spend in a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
W(o_mcon1)
Returns the mean time spend in the M/M/1 queueing model
Description
Returns the mean time spend in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
W(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the W
W(o_mm1)
Returns the mean time spend in the M/M/1/K queueing model
Description
Returns the mean time spend in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
W(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the W
W(o_mm1k)
Returns the mean time spend in the M/M/1/K/K queueing model
Description
Returns the mean time spend in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
W(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the W
W(o_mm1kk)
Returns the mean time spend in the M/M/c queueing model
Description
Returns the mean time spend in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
W(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the W
W(o_mmc)
Returns the mean time spend in the M/M/c/c queueing model
Description
Returns the mean time spend in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
W(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the W
W(o_mmcc)
Returns the mean time spend in the M/M/c/K queueing model
Description
Returns the mean time spend in the M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
W(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the W
W(o_mmck)
Returns the mean time spend in the M/M/c/K/K queueing model
Description
Returns the mean time spend in the M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
W(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the W
W(o_mmckk)
Returns the mean time spend in the M/M/c/K/m queueing model
Description
Returns the mean time spend in the M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
W(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the W
W(o_mmckm)
Returns the time spend in the M/M/Infinite queueing model
Description
Returns the mean time spend in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
W(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the W
W(o_mminf)
Returns the mean time spend in the M/M/Infinite/K/K queueing model
Description
Returns the mean time spend in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
W(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the mean time spend in the M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the W
W(o_MMInfKK)
Returns the mean time spend in an Open Jackson Network
Description
Returns the mean time spend in an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
W(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Returns the mean time spend in an Open Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
W(o_ojn)
Returns the normalized mean response time in a queueing model
Description
Returns the normalized mean response time in a queueing model
Usage
WWs(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the normalized mean response time in a queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the WWs
WWs(o_mm1kk)
Returns the normalized mean response time in the M/M/1/K/K queueing model
Description
Returns the normalized mean response time in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
WWs(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the normalized mean response time in the M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the WWs
WWs(o_mm1kk)
Returns the vector with each class mean time spend on a multiclass queueing network
Description
Returns the vector with each class mean time spend on a multiclass queueing network
Usage
Wc(x, ...)
Arguments
x |
a object of class o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Returns the vector with each class mean time spend on a multiclass queueing network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wc(o_mcon1)
Returns the vector with each class mean time spend on a MultiClass Closed Network
Description
Returns the vector with each class mean time spend on a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Wc(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Returns the vector with each class mean time spend on a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Wc(o_MCCN1)
Returns the vector with each class mean time spend on a MultiClass Mixed Network
Description
Returns the vector with each class mean time spend on a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Wc(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Returns the vector with each class mean time spend on a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Wc(o_mcmn1)
Returns the vector with each class mean time spend on a MultiClass Open Network
Description
Returns the vector with each class mean time spend on a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Wc(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Returns the vector with each class mean time spend on a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wc(o_mcon1)
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Queueing Network
Description
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Queueing Network
Usage
Wck(x, ...)
Arguments
x |
a object of class o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Queueing Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Wck.o_MCON
Wck.o_MCCN
Wck.o_MCMN
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wck(o_mcon1)
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Closed Network
Description
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Wck(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Wck(o_MCCN1)
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Mixed Network
Description
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Wck(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Wck(o_mcmn1)
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Open Network
Description
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Wck(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wck(o_mcon1)
Generic S3 method to return the mean time spend in each node (or server) of a network
Description
Generic S3 method to return the mean time spend in each node (or server) of a network
Usage
Wk(x, ...)
Arguments
x |
a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN |
... |
aditional arguments |
Details
Generic S3 method to return the mean time spend in each node (or server) of a network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Wk.o_OJN
Wk.o_CJN
Wk.o_MCON
Wk.o_MCCN
Wk.o_MCMN
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wk(o_mcon1)
Returns the vector with the mean time spend in each node (server) of a Closed Jackson Network
Description
Returns the vector with the mean time spend in each node (server) of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
Wk(x, ...)
Arguments
x |
a object of class o_CJN |
... |
aditional arguments |
Details
Returns the vector with the mean time spend in each node (server) of a Closed Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
Wk(m_cjn1)
Returns a vector with the mean time spend in each node (server) of a MultiClass Closed Network
Description
Returns a vector with the mean time spend in each node (server) of a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
Wk(x, ...)
Arguments
x |
a object of class o_MCCN |
... |
aditional arguments |
Details
Returns a vector with the mean time spend in each node (server) of a MultiClass Closed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Wk(o_MCCN1)
Returns a matrix with the mean time spend in each node (server) of a MultiClass Mixed Network
Description
Returns a matrix with the mean time spend in each node (server) of a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
Wk(x, ...)
Arguments
x |
a object of class o_MCMN |
... |
aditional arguments |
Details
Returns a matrix with the mean time spend in each node (server) of a MultiClass Mixed Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Wk(o_mcmn1)
Returns a matrix with the mean time spend in each node (server) of a MultiClass Open Network
Description
Returns a matrix with the mean time spend in each node (server) of a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
Wk(x, ...)
Arguments
x |
a object of class o_MCON |
... |
aditional arguments |
Details
Returns a matrix with the mean time spend in each node (server) of a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wk(o_mcon1)
Returns the vector with the mean time spend in each node (server) of an Open Jackson Network
Description
Returns the vector with the mean time spend in each node (server) of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
Wk(x, ...)
Arguments
x |
a object of class o_OJN |
... |
aditional arguments |
Details
Returns the vector with the mean time spend in each node (server) of an Open Jackson Network
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
m_ojn1 <- QueueingModel(ojn1)
Wk(m_ojn1)
Returns the mean time spend in queue in a queueing model
Description
Returns the mean time spend in queue in a queueing model
Usage
Wq(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Returns the mean time spend in queue in a queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Wq.o_MM1
Wq.o_MMC
Wq.o_MM1K
Wq.o_MMCK
Wq.o_MM1KK
Wq.o_MMCKK
Wq.o_MMCC
Wq.o_MMCKM
Wq.o_MMInfKK
Wq.o_MMInf
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wq
Wq(o_mm1)
Returns the mean time spend in queue in the M/M/1 queueing model
Description
Returns the mean time spend in queue in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
Wq(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wq
Wq(o_mm1)
Returns the mean time spend in queue in the M/M/1/K queueing model
Description
Returns the mean time spend in queue in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
Wq(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the Wq
Wq(o_mm1k)
Returns the mean time spend in queue in the M/M/1/K/K queueing model
Description
Returns the mean time spend in queue in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
Wq(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the Wq
Wq(o_mm1kk)
Returns the mean time spend in queue in the M/M/c queueing model
Description
Returns the mean time spend in queue in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
Wq(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Wq
Wq(o_mmc)
Returns the mean time spend in queue in the M/M/c/c queueing model
Description
Returns the mean time spend in queue in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
Wq(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the Wq
Wq(o_mmcc)
Returns the mean time spend in queue in the M/M/c/K queueing model
Description
Returns the mean time spend in queue in the M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
Wq(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Wq
Wq(o_mmck)
Returns the mean time spend in queue in the M/M/c/K/K queueing model
Description
Returns the mean time spend in queue in the M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
Wq(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Wq
Wq(o_mmckk)
Returns the mean time spend in queue in the M/M/c/K/m queueing model
Description
Returns the mean time spend in queue in the M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
Wq(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Wq
Wq(o_mmckm)
Returns the mean time spend in queue in the M/M/Infinite queueing model
Description
Returns the mean time spend in queue in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
Wq(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Wq
Wq(o_mminf)
Returns the mean time spend in queue in the M/M/Infinite/K/K queueing model
Description
Returns the mean time spend in queue in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
Wq(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the mean time spend in queue in the M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Wq
Wq(o_MMInfKK)
Returns the mean time spend in queue when there is queue in a queueing model
Description
Returns the mean time spend in queue when there is queue in a queueing model
Usage
Wqq(x, ...)
Arguments
x |
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in a queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Wqq.o_MM1
Wqq.o_MMC
Wqq.o_MM1K
Wqq.o_MMCK
Wqq.o_MM1KK
Wqq.o_MMCKK
Wqq.o_MMCC
Wqq.o_MMCKM
Wqq.o_MMInfKK
Wqq.o_MMInf
Examples
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wqq
Wqq(o_mm1)
Returns the mean time spend in queue when there is queue in the M/M/1 queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/1 queueing model
Usage
## S3 method for class 'o_MM1'
Wqq(x, ...)
Arguments
x |
a object of class o_MM1 |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wqq
Wqq(o_mm1)
Returns the mean time spend in queue when there is queue in the M/M/1/K queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/1/K queueing model
Usage
## S3 method for class 'o_MM1K'
Wqq(x, ...)
Arguments
x |
a object of class o_MM1K |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the Wqq
Wqq(o_mm1k)
Returns the mean time spend in queue when there is queue in the M/M/1/K/K queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/1/K/K queueing model
Usage
## S3 method for class 'o_MM1KK'
Wqq(x, ...)
Arguments
x |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the Wqq
Wqq(o_mm1kk)
Returns the mean time spend in queue when there is queue in the M/M/c queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/c queueing model
Usage
## S3 method for class 'o_MMC'
Wqq(x, ...)
Arguments
x |
a object of class o_MMC |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Wqq
Wqq(o_mmc)
Returns the mean time spend in queue when there is queue in the M/M/c/c queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/c/c queueing model
Usage
## S3 method for class 'o_MMCC'
Wqq(x, ...)
Arguments
x |
a object of class o_MMCC |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the Wqq
Wqq(o_mmcc)
Returns the mean time spend in queue when there is queue in the M/M/c/K queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/c/K queueing model
Usage
## S3 method for class 'o_MMCK'
Wqq(x, ...)
Arguments
x |
a object of class o_MMCK |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Wqq
Wqq(o_mmck)
Returns the mean time spend in queue when there is queue in the M/M/c/K/K queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/c/K/K queueing model
Usage
## S3 method for class 'o_MMCKK'
Wqq(x, ...)
Arguments
x |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Wqq
Wqq(o_mmckk)
Returns the mean time spend in queue when there is queue in the M/M/c/K/m queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/c/K/m queueing model
Usage
## S3 method for class 'o_MMCKM'
Wqq(x, ...)
Arguments
x |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Wqq
Wqq(o_mmckm)
Returns the mean time spend in queue when there is queue in the M/M/Infinite queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/Infinite queueing model
Usage
## S3 method for class 'o_MMInf'
Wqq(x, ...)
Arguments
x |
a object of class o_MMInf |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Wqq
Wqq(o_mminf)
Returns the mean time spend in queue when there is queue in the M/M/Infinite/K/K queueing model
Description
Returns the mean time spend in queue when there is queue in the M/M/Infinite/K/K queueing model
Usage
## S3 method for class 'o_MMInfKK'
Wqq(x, ...)
Arguments
x |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Returns the mean time spend in queue when there is queue in the M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Wqq
Wqq(o_MMInfKK)
Summary of the results of a generic Birth and Death process model
Description
Summary of the results of a generic Birth and Death process model.
Usage
## S3 method for class 'summary.o_BnD'
print(x, ...)
Arguments
x |
a object of class summary.o_BnD |
... |
aditional arguments |
Details
Summaries a generic Birth and Death process model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
## Build the model
o_BnD <- QueueingModel(i_BnD)
## Report the results
print(summary(o_BnD))
Summary of the results of a Closed Jackson Network
Description
Summary of the results of a Closed Jackson Network
Usage
## S3 method for class 'summary.o_CJN'
print(x, ...)
Arguments
x |
a object of class summary.o_CJN |
... |
aditional arguments |
Details
Summaries a Closed Jackson Network model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
print(summary(m_cjn1))
Summary of the results of a MultiClass Closed Network
Description
Summary of the results of a MultiClass Closed Network
Usage
## S3 method for class 'summary.o_MCCN'
print(x, ...)
Arguments
x |
a object of class summary.o_MCCN |
... |
aditional arguments |
Details
Summaries a MultiClass Closed Network model
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
print(summary(o_MCCN1))
Summary of the results of a MultiClass Mixed Network
Description
Summary of the results of a MultiClass Mixed Network
Usage
## S3 method for class 'summary.o_MCMN'
print(x, ...)
Arguments
x |
a object of class summary.o_MCMN |
... |
aditional arguments |
Details
Summaries a MultiClass Mixed Network model
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
print(summary(o_mcmn1))
Summary of the results of a MultiClass Open Network
Description
Summary of the results of a MultiClass Open Network
Usage
## S3 method for class 'summary.o_MCON'
print(x, ...)
Arguments
x |
a object of class summary.o_MCON |
... |
aditional arguments |
Details
Summaries a MultiClass Open Network model
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
print(summary(o_mcon1))
Summary of the results of a M/M/1 queueing model
Description
Summary of the results of a M/M/1 queueing model.
Usage
## S3 method for class 'summary.o_MM1'
print(x, ...)
Arguments
x |
a object of class summary.o_MM1 |
... |
aditional arguments |
Details
Summaries a M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the results
print(summary(o_mm1))
Summary of the results of a M/M/1/K queueing model
Description
Summary of the results of a M/M/1/K queueing model.
Usage
## S3 method for class 'summary.o_MM1K'
print(x, ...)
Arguments
x |
a object of class summary.o_MM1K |
... |
aditional arguments |
Details
Summaries a M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Report the results
print(summary(o_mm1k))
Summary of the results of a M/M/1/K/K queueing model
Description
Summary of the results of a M/M/1/K/K queueing model.
Usage
## S3 method for class 'summary.o_MM1KK'
print(x, ...)
Arguments
x |
a object of class summary.o_MM1KK |
... |
aditional arguments |
Details
Summaries a M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Report the results
print(summary(o_mm1kk))
Summary of the results of a M/M/c queueing model
Description
Summary of the results of a M/M/c queueing model.
Usage
## S3 method for class 'summary.o_MMC'
print(x, ...)
Arguments
x |
a object of class summary.o_MMC |
... |
aditional arguments |
Details
Summaries a M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the results
print(summary(o_mmc))
Summary of the results of a M/M/c/c queueing model
Description
Summary of the results of a M/M/c/c queueing model.
Usage
## S3 method for class 'summary.o_MMCC'
print(x, ...)
Arguments
x |
a object of class summary.o_MMCC |
... |
aditional arguments |
Details
Summaries a M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Report the results
print(summary(o_mmcc))
Summary of the results of a M/M/c/K queueing model
Description
Summary of the results of a M/M/c/K queueing model.
Usage
## S3 method for class 'summary.o_MMCK'
print(x, ...)
Arguments
x |
a object of class summary.o_MMCK |
... |
aditional arguments |
Details
Summaries a M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the results
print(summary(o_mmck))
Summary of the results of a M/M/c/K/K queueing model
Description
Summary of the results of a M/M/c/K/K queueing model.
Usage
## S3 method for class 'summary.o_MMCKK'
print(x, ...)
Arguments
x |
a object of class summary.o_MMCKK |
... |
aditional arguments |
Details
Summaries a M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the results
print(summary(o_mmckk))
Summary of the results of a M/M/c/K/m queueing model
Description
Summary of the results of a M/M/c/K/m queueing model.
Usage
## S3 method for class 'summary.o_MMCKM'
print(x, ...)
Arguments
x |
a object of class summary.o_MMCKM |
... |
aditional arguments |
Details
Summaries a M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the results
print(summary(o_mmckm))
Summary of the results of a M/M/Infinite queueing model
Description
Summary of the results of a M/M/Infinite queueing model.
Usage
## S3 method for class 'summary.o_MMInf'
print(x, ...)
Arguments
x |
a object of class summary.o_MMInf |
... |
aditional arguments |
Details
Summaries a M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the results
print(summary(o_mminf))
Reports the results of a M/M/Infinite/K/K queueing model
Description
Reports the results of a M/M/Infinite/K/K queueing model.
Usage
## S3 method for class 'summary.o_MMInfKK'
print(x, ...)
Arguments
x |
a object of class summary.o_MMInfKK |
... |
aditional arguments |
Details
Summaries a M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the results
print(summary(o_MMInfKK))
Reports the results of an Open Jackson Network
Description
Reports the results of an Open Jackson Network
Usage
## S3 method for class 'summary.o_OJN'
print(x, ...)
Arguments
x |
a object of class summary.o_OJN |
... |
aditional arguments |
Details
Summaries an Open Jackson Network model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
o_ojn <- QueueingModel(i_ojn)
print(summary(o_ojn))
Summary of the results of a generic Birth and Death process model
Description
Summary of the results of a generic Birth and Death process model.
Usage
## S3 method for class 'o_BnD'
summary(object, ...)
Arguments
object |
a object of class o_BnD |
... |
aditional arguments |
Details
Summaries a generic Birth and Death process model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
## Build the model
o_BnD <- QueueingModel(i_BnD)
## Report the results
summary(o_BnD)
Summary of the results of a Closed Jackson Network
Description
Summary of the results of a Closed Jackson Network
Usage
## S3 method for class 'o_CJN'
summary(object, ...)
Arguments
object |
a object of class o_CJN |
... |
aditional arguments |
Details
Summaries a Closed Jackson Network model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
summary(m_cjn1)
Summary of the results of a MultiClass Closed Network
Description
Summary of the results of a MultiClass Closed Network
Usage
## S3 method for class 'o_MCCN'
summary(object, ...)
Arguments
object |
a object of class o_MCCN |
... |
aditional arguments |
Details
Summaries a queueing network model
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 142 in reference [Lazowska84] for more details.
classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
summary(o_MCCN1)
Summary of the results of a MultiClass Mixed Network
Description
Summary of the results of a MultiClass Mixed Network
Usage
## S3 method for class 'o_MCMN'
summary(object, ...)
Arguments
object |
a object of class o_MCMN |
... |
aditional arguments |
Details
Summaries a MultiClass Mixed Network model
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 147 in reference [Lazowska84] for more details.
classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
summary(o_mcmn1)
Summary of the results of a MultiClass Open Network
Description
Summary of the results of a MultiClass Open Network
Usage
## S3 method for class 'o_MCON'
summary(object, ...)
Arguments
object |
a object of class o_MCON |
... |
aditional arguments |
Details
Summaries a MultiClass Open Network
References
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example in pag 138 in reference [Lazowska84] for more details.
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
summary(o_mcon1)
Summary of the results of a M/M/1 queueing model
Description
Summary of the results of a M/M/1 queueing model.
Usage
## S3 method for class 'o_MM1'
summary(object, ...)
Arguments
object |
a object of class o_MM1 |
... |
aditional arguments |
Details
Summaries a M/M/1 queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the results
summary(o_mm1)
Summary of the results of a M/M/1/K queueing model
Description
Summary of the results of a M/M/1/K queueing model.
Usage
## S3 method for class 'o_MM1K'
summary(object, ...)
Arguments
object |
a object of class o_MM1K |
... |
aditional arguments |
Details
Summaries a M/M/1/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Report the results
summary(o_mm1k)
Summary of the results of a M/M/1/K/K queueing model
Description
Summary of the results of a M/M/1/K/K queueing model.
Usage
## S3 method for class 'o_MM1KK'
summary(object, ...)
Arguments
object |
a object of class o_MM1KK |
... |
aditional arguments |
Details
Summaries a M/M/1/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Report the results
summary(o_mm1kk)
Summary of the results of a M/M/c queueing model
Description
Summary of the results of a M/M/c queueing model.
Usage
## S3 method for class 'o_MMC'
summary(object, ...)
Arguments
object |
a object of class o_MMC |
... |
aditional arguments |
Details
Summaries a M/M/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the results
summary(o_mmc)
Summary of the results of a M/M/c/c queueing model
Description
Summary of the results of a M/M/c/c queueing model.
Usage
## S3 method for class 'o_MMCC'
summary(object, ...)
Arguments
object |
a object of class o_MMCC |
... |
aditional arguments |
Details
Summaries a M/M/c/c queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Report the results
summary(o_mmcc)
Summary of the results of a M/M/c/K queueing model
Description
Summary of the results of a M/M/c/K queueing model.
Usage
## S3 method for class 'o_MMCK'
summary(object, ...)
Arguments
object |
a object of class o_MMCK |
... |
aditional arguments |
Details
Summaries a M/M/c/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the results
summary(o_mmck)
Summary of the results of a M/M/c/K/K queueing model
Description
Summary of the results of a M/M/c/K/K queueing model.
Usage
## S3 method for class 'o_MMCKK'
summary(object, ...)
Arguments
object |
a object of class o_MMCKK |
... |
aditional arguments |
Details
Summaries a M/M/c/K/K queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the results
summary(o_mmckk)
Summary of the results of a M/M/c/K/m queueing model
Description
Summary of the results of a M/M/c/K/m queueing model.
Usage
## S3 method for class 'o_MMCKM'
summary(object, ...)
Arguments
object |
a object of class o_MMCKM |
... |
aditional arguments |
Details
Summaries a M/M/c/K/m queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the results
summary(o_mmckm)
Summary of the results of a M/M/Infinite queueing model
Description
Summary of the results of a M/M/Infinite queueing model.
Usage
## S3 method for class 'o_MMInf'
summary(object, ...)
Arguments
object |
a object of class o_MMInf |
... |
aditional arguments |
Details
Summaries a M/M/Infinite queueing model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the results
summary(o_mminf)
Summary of the results of a M/M/Infinite/K/K queueing model
Description
Summary of the results of a M/M/Infinite/K/K queueing model.
Usage
## S3 method for class 'o_MMInfKK'
summary(object, ...)
Arguments
object |
a object of class o_MMInfKK |
... |
aditional arguments |
Details
Summaries a M/M/Infinite/K/K queueing model
References
[Kleinrock1975] Leonard Kleinrock (1975).
Queueing Systems Vol 1: Theory.
John Wiley & Sons.
See Also
Examples
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the results
summary(o_MMInfKK)
Summary of the results of an Open Jackson Network
Description
Summary of the results of an Open Jackson Network
Usage
## S3 method for class 'o_OJN'
summary(object, ...)
Arguments
object |
a object of class o_OJN |
... |
aditional arguments |
Details
Summaries an Open Jackson Network model
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
o_ojn <- QueueingModel(i_ojn)
summary(o_ojn)