Type: | Package |
Title: | Assembling Data Sets for Non-Linear Mixed Effects Modeling |
Version: | 0.0.1 |
Maintainer: | Mario Gonzalez Sales <mario@modelinggreatsolutions.com> |
Description: | To Simplify the time consuming and error prone task of assembling complex data sets for non-linear mixed effects modeling. Users are able to select from different absorption processes such as zero and first order, or a combination of both. Furthermore, data sets containing data from several entities, responses, and covariates can be simultaneously assembled. |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
Imports: | utils, lubridate, stats, readxl, reshape, reshape2, sqldf, kableExtra, plyr, dplyr, tidyverse, readr |
Suggests: | rmarkdown, knitr, devtools, testthat |
RoxygenNote: | 6.1.1 |
URL: | https://github.com/syneoshealth/puzzle |
BugReports: | https://github.com/syneoshealth/puzzle/issues |
NeedsCompilation: | no |
Packaged: | 2019-11-22 11:26:50 UTC; Juan |
Author: | Olivier Barriere [aut], Mario Gonzalez Sales [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2019-11-28 16:10:02 UTC |
A covariate data set.
Description
A dataset containing covariate information.
Usage
df_cov
Format
A tibble with 12 rows and 4 variables:
- ID
Individual
- TIME
Time, in hours
- VARIABLE
Variable
- VALUE
Value of the variable
Starting covariate data set.
Description
A dataset containing covariate information.
Usage
df_cov_start
Format
A data frame with 4 rows and 3 variables:
- ID
Individual
- VARIABLE
Variable
- VALUE
Value of the variable
A covariate data set to be used with time dependent covariates.
Description
A dataset containing time dependent covariates.
Usage
df_cov_time_dependent_start
Format
A data frame with 6 rows and 4 variables:
- ID
Individual
- VARIABLE
Variable
- VALUE
Value of the variable
- TIME
Time, in hours
A dose data set.
Description
A dataset containing dose information.
Usage
df_dose
Format
A data frame with 12 rows and 3 variables:
- ID
Individual
- TIME
Time, in weeks
- AMT
Dose, in mg
A dose data set including datetimes.
Description
A dataset containing dose information in datetime format.
Usage
df_dose_datetime
Format
A data frame with 5 rows and 12 variables:
- ID
Individual
- TRT
Treatment label
- DOSE
Dose, in mg
- PERIOD
Period
- DAY
Day of adminsitration
- AMT
Dose, in mg
- DATETIME
Dta ein datetime format
- TIMEPOINT
Timepoint
- COHORT
Cohort
- FORM
Drug form
- TREATMENT
Treatment
- FOOD
Food status
A dose data set to be used with EVID=4.
Description
A dataset containing dosing information.
Usage
df_dose_evid4
Format
A data frame with 418 rows and 10 variables:
- ID
Individual
- PERIOD
Period
- TIMEPOINT
Timepoint
- TIME
Time, in hours
- AMT
Dose, in mg
- TRT
Treatment label
- DAY
Day of adminsitration
- SEQUENCE
Sequence
- TRT2
Treatment
- EVID
Evid value
A dose data set to be used with optional columns.
Description
A dataset containing dosing information.
Usage
df_dose_optional_columns
Format
A data frame with 4 rows and 6 variables:
- ID
Individual
- TIME
Time, in hours
- AMT
Dose, in mg
- OCC
Occasion
- TIMEPOINT
Timepoint
- TRT
Treatment
A dose data set example.
Description
A dataset containing dosing information.
Usage
df_dose_start
Format
A data frame with 4 rows and 3 variables:
- ID
Individual
- TIME
Time, in hours
- AMT
Dose, in mg
An extra times data set example.
Description
A dataset containing extra times.
Usage
df_extra_times
Format
A data frame with 251 rows and 1 variable:
- TIME
Time, in hours
An extra times data set example with datetime format.
Description
A dataset containing extra times in datetime format.
Usage
df_extra_times_datetime
Format
A data frame with 20 rows and 1 variable:
- ID
Individual
- DATETIME
Datetime
- TIMEPOINT
Timepoint
An extra times metabolite data set to be used with EVID=4.
Description
A dataset containing extra times for an hypothetical metabolite.
Usage
df_extra_times_metabolite_evid4
Format
A data frame with 770 rows and 3 variable:
- PERIOD
Period
- TIMEPOINT
Timepoint
- TIME
Time, in hours
An extra times parent data set to be used with EVID=4.
Description
A dataset containing extra times for an hypothetical parent drug.
Usage
df_extra_times_parent_evid4
Format
A data frame with 770 rows and 3 variable:
- PERIOD
Period
- TIMEPOINT
Timepoint
- TIME
Time, in hours
An extra times data set example.
Description
A dataset containing extra times.
Usage
df_extra_times_time
Format
A data frame with 1040 rows and 3 variable:
- ID
Individual
- TIME
Time, in hours
- TIMEPOINT
Timepoint
A pharmacokinetic metabolite data set to be used with EVID=4.
Description
A dataset containing pharmacokinetic information for an hypothetical metabolite.
Usage
df_metabolite_evid4
Format
A data frame with 1359 rows and 7 variables:
- ID
Individual
- PERIOD
Period
- TIMEPOINT
Timepoint
- TIME
Time, in hours
- DV
Drug concentration, in mg/L
- TIMEDAY
Timeday
- DAY
Day of adminsitration
A pharmacokinetic parent data set to be used with EVID=4.
Description
A dataset containing pharmacokinetic information for an hypothetical parent drug.
Usage
df_parent_evid4
Format
A data frame with 1359 rows and 7 variables:
- ID
Individual
- PERIOD
Period
- TIMEPOINT
Timepoint
- TIME
Time, in hours
- DV
Drug concentration, in mg/L
- TIMEDAY
Timeday
- DAY
Day of adminsitration
An starting pharmacoynamic data set example.
Description
A dataset containing pharmacodynamic observations.
Usage
df_pd_start
Format
A tibble with 6 rows and 3 variable:
- ID
Individual
- TIME
Time, in hours
- DV
Response, ng/mL
A pharmacokinetic data set.
Description
A dataset containing pharmacokinetic information.
Usage
df_pk
Format
A tibble with 132 rows and 4 variable:
- ID
Individual
- TIMEPOINT
Timepoint
- TIME
Time, in hours
- DV
Drug concentration, ng/mL
A pharmacokinetic data set example in datetime format.
Description
A dataset containing pharmacokinetic information.
Usage
df_pk_datetime
Format
A data frame with 65 rows and 7 variable:
- ID
Individual
- DV
Response, ng/mL
- DATETIME
Datetime
- TIMEPOINT
Timepoint
- DAY
Day
- PERIOD
Period
- BLQ
I a BLQ?
- LLOQ
Lower limit of quantification, ng/mL
A pharmacokinetic data set of metabolite data.
Description
A dataset containing pharmacokinetic information for an hypothetical metabolite.
Usage
df_pk_metabolite
Format
A data frame with 10 rows and 3 variable:
- ID
Individual
- TIME
Time, in hours
- DV
Drug concentration, ng/mL
A pharmacokinetic data set to be used with optional columns.
Description
A dataset containing pharmacokinetic information.
Usage
df_pk_optional_columns
Format
A data frame with 12 rows and 5 variable:
- ID
Individual
- TIME
Time, in hours
- DV
Drug concentration, ng/mL
- OCC
Occasion
- TIMEPOINT
Timepoint
A pharmacokinetic data set for an hypothetical parent drug.
Description
A dataset containing pharmacokinetic information.
Usage
df_pk_parent
Format
A data frame with 12 rows and 3 variable:
- ID
Individual
- TIME
Time, in hours
- DV
Drug concentration, ng/mL
A pharmacokinetic data set example.
Description
A dataset containing pharmacokinetic information.
A dataset containing pharmacokinetic information.
Usage
df_pk_start
df_pk_start
Format
A tibble with 12 rows and 3 variable:
- ID
Individual
- TIME
Time, in hours
- DV
Response, ng/mL
A pharmacodynamic data set.
Description
A dataset containing pharmacodynamic information for response 1.
Usage
df_response1
Format
A data frame with 6 rows and 3 variable:
- ID
Individual
- TIME
Time, in hours
- DV
Response, ng/mL
A pharmacodynamic data set.
Description
A dataset containing pharmacodynamic information for response 2.
Usage
df_response2
Format
A data frame with 6 rows and 3 variable:
- ID
Individual
- TIME
Time, in hours
- DV
Response, seconds
A pharmacodynamic data set.
Description
A dataset containing pharmacodynamic information for response 3.
Usage
df_response3
Format
A data frame with 6 rows and 3 variable:
- ID
Individual
- TIME
Time, in hours
- DV
Response, in hours
puzzle
Description
Build pharmacometric data sets from basic tabulated files
Usage
puzzle(directory = NULL, order, coercion = list(name = NULL, sep =
","), optionalcolumns = NULL, pk = list(name = NULL, data = NULL),
dose = list(name = NULL, data = NULL), cov = list(name = NULL, data =
NULL), pd = list(name = NULL, data = NULL), extratimes = list(name =
NULL, data = NULL), nm = list(name = NULL), fillcolumns = NULL,
nocoercioncolumns = NULL, norepeatcolumns = NULL, initialindex = 0,
na.strings = "N/A", arrange = "ID,TIME,CMT,desc(EVID)",
datetimeformat = "%Y-%m-%d %H:%M:%S", timeunits = "hours",
timezone = Sys.timezone(), ignore = "C", missingvalues = ".",
parallel = TRUE, verbose = FALSE, username = NULL)
Arguments
directory |
path to your directory |
order |
define the absorption order, can be 0, 1, c(0,1), or c(1,1) |
coercion |
define name for coercion file |
optionalcolumns |
define optional columns |
pk |
define the required file containing the pk information. It can be a .csv or an .xlsx file |
dose |
define the required file containing the dose information. It can be a .csv, an .xlsx file or an R object. |
cov |
define the optional file containing the covariate information. It can be a .csv, an .xlsx file or an R object. |
pd |
define the optional file containing the pd information. It can be a .csv, or a .xlsx file. |
extratimes |
define the optional file containing the additional times. It can be a .csv, or a .xlsx file. |
nm |
name of output file generated by puzzle |
fillcolumns |
define columns to be filled |
nocoercioncolumns |
define columns to be dropped from the coercion file |
norepeatcolumns |
define columns not to be repeated |
initialindex |
define the lower category of categorical covariates |
na.strings |
define value for na |
arrange |
define how the columns should be arranged |
datetimeformat |
define format for date times |
timeunits |
define time units if needed |
timezone |
define timezone |
ignore |
define ignore value |
missingvalues |
define missing value |
parallel |
define parallel zero + first order absorption |
verbose |
define verbose |
username |
define person performing the assembling |
Value
a pharmacometrics ready data set
Examples
## Not run:
nm = list(pk = list(parent=as.data.frame(puzzle::df_pk_start)),
dose=as.data.frame(puzzle::df_dose_start),
cov=as.data.frame(puzzle::df_cov_start))
puzzle(directory=file.path(tempdir()),
order=c(0),
pk=list(data=nm$pk),
dose=list(data=nm$dose),
cov=list(data=nm$cov))
## End(Not run)