## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, fig.align = "center") ## ---- eval = FALSE------------------------------------------------------------ # library(postpack) # data(cjs) # data(cjs_no_rho) ## ---- echo = FALSE------------------------------------------------------------ library(postpack) load("../data/cjs.rda") load("../data/cjs_no_rho.rda") ## ----------------------------------------------------------------------------- post_list = list(cjs, cjs_no_rho) ## ----------------------------------------------------------------------------- names(post_list) = c("est_rho", "no_rho") ## ----------------------------------------------------------------------------- sapply(post_list, post_dim) ## ----------------------------------------------------------------------------- sapply(post_list, get_params, type = "base_index") ## ----------------------------------------------------------------------------- sapply(post_list, function(model) post_summ(model, ".", Rhat = TRUE)["Rhat",]) ## ----------------------------------------------------------------------------- lapply(post_list, function(model) post_summ(model, "^B", digits = 2)) ## ----------------------------------------------------------------------------- lapply(post_list, function(model) post_summ(model, "p", digits = 2)) ## ---- message = FALSE--------------------------------------------------------- lapply(post_list, function(model) { SIG_decomp = vcov_decomp(model, "SIG") rho_mean = post_summ(SIG_decomp, "rho")["mean",] array_format(rho_mean) }) ## ----------------------------------------------------------------------------- lapply(post_list, function(model) { # 2SDs below average length, average length, and 2SDs above average length # model was fitted with length scaled and centered pred_length = c(-2,0,2) # extract posterior mean of random coefficients b0_mean = post_summ(model, "b0")["mean",] b1_mean = post_summ(model, "b1")["mean",] # predict survival each year from coefficients at each length pred_phi = sapply(1:5, function(y) { logit_phi = b0_mean[y] + b1_mean[y] * pred_length phi = exp(logit_phi)/(1 + exp(logit_phi)) round(phi, 2) }) # give dimension names dimnames(pred_phi) = list(c("small", "average", "large"), paste0("y", 1:5)) # return the predicted survival return(pred_phi) })