## ----setup, include = FALSE--------------------------------------------------- #file.edit(normalizePath("~/.Renviron")) LOCAL <- identical(Sys.getenv("LOCAL"), "TRUE") #LOCAL=TRUE knitr::opts_chunk$set(purl = LOCAL) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 3, fig.width = 5 ) ## ----------------------------------------------------------------------------- library(plsRglm) library(plsRbeta) ## ---- eval=FALSE-------------------------------------------------------------- # data(TxTum) # # TxTum.mod.bootBR6 <- bootplsbeta(plsRbeta(formula=I(CELTUMCO/100)~.,data=TxTum,nt=6,modele="pls-beta",type="BR"), sim="ordinary", stype="i", R=1000) # #save(TxTum.mod.bootBR6,file="TxTum.mod.bootBR6.Rdata") ## ---- warnings=FALSE---------------------------------------------------------- data("TxTum.mod.bootBR6") temp.ci <- suppressWarnings(plsRglm::confints.bootpls(TxTum.mod.bootBR6)) ## ---- fig.cap="Figure 1. Boxplot of bootstrap distributions, 6 components BR."---- boxplots.bootpls(TxTum.mod.bootBR6,indices = 2:nrow(temp.ci)) ## ---- fig.cap="Figure 2. Bootstrap 95% confidence intervals, 6 components BR."---- plsRglm::plots.confints.bootpls(temp.ci,prednames=TRUE,indices = 2:nrow(temp.ci)) ## ----------------------------------------------------------------------------- ind_BCa_nt6BR <- (temp.ci[,7]<0&temp.ci[,8]<0)|(temp.ci[,7]>0&temp.ci[,8]>0) rownames(temp.ci)[ind_BCa_nt6BR] ## ---- fig.cap="Figure 3. Bootstrap 95% confidence intervals, BCa significant variables, 6 components BR."---- plsRglm::plots.confints.bootpls(temp.ci,prednames=TRUE,indices = (2:nrow(temp.ci))[ind_BCa_nt6BR[-1]],articlestyle=FALSE,legendpos="topright") ## ----------------------------------------------------------------------------- #TxTum <- read.table("MET_rev_edt.txt",sep="\t",header=TRUE) data("TxTum.mod.bootBC1") temp.ci <- plsRglm::confints.bootpls(TxTum.mod.bootBC1) data("ind_BCa_nt1BC") data("ind_BCa_nt2BC") data("ind_BCa_nt3BC") data("ind_BCa_nt4BC") data("ind_BCa_nt5BC") data("ind_BCa_nt6BC") data("ind_BCa_nt1BR") data("ind_BCa_nt2BR") data("ind_BCa_nt3BR") data("ind_BCa_nt4BR") data("ind_BCa_nt5BR") data("ind_BCa_nt6BR") rownames(temp.ci)[ind_BCa_nt1BC] (colnames(TxTum.mod.bootBC1$data)[-1])[] indics <- cbind(ind_BCa_nt1BC, ind_BCa_nt2BC, ind_BCa_nt3BC, ind_BCa_nt4BC, ind_BCa_nt5BC, ind_BCa_nt6BC, ind_BCa_nt1BR, ind_BCa_nt2BR, ind_BCa_nt3BR, ind_BCa_nt4BR, ind_BCa_nt5BR, ind_BCa_nt6BR) nbpreds <- rbind(colSums(indics[,1:6]),colSums(indics[,7:12])) colnames(nbpreds) <- c("1","2","3","4","5","6") rownames(nbpreds) <- c("BC","BR") ## ----------------------------------------------------------------------------- nbpreds ## ----------------------------------------------------------------------------- inone <- indics[rowSums(indics)>0,c(1,7,2,8,3,9,4,10,5,11,6,12)] inone <- t(apply(inone,1,as.numeric)) rownames(inone) colnames(inone) <- c("BC1","BR1","BC2","BR2","BC3","BR3","BC4","BR4","BC5","BR5","BC6","BR6") colnames(inone) <- c("1 BC"," BR","2 BC"," BR","3 BC"," BR","4 BC"," BR","5 BC"," BR","6 BC"," BR") ## ----------------------------------------------------------------------------- inone ## ---- fig.cap="Figure 4. Selected variables using the bootstrap BCa technique."---- library(bipartite) bipartite::visweb(t(inone),type="None",labsize=2,square="b",box.col="grey25",pred.lablength=7) ## ----------------------------------------------------------------------------- data(colon) orig <- colon ## ---- eval=FALSE-------------------------------------------------------------- # modpls.boot3 <- bootplsbeta(plsRbeta(X..Cellules.tumorales~.,data=colon,nt=3,modele="pls-beta"), sim="ordinary", stype="i", R=250) # #save(modpls.boot3,file="modpls.boot_nt3.Rdata") ## ----------------------------------------------------------------------------- data("modpls.boot_nt3") temp.ci <- suppressWarnings(plsRglm::confints.bootpls(modpls.boot3)) ind_BCa_nt3 <- (temp.ci[,7]<0&temp.ci[,8]<0)|(temp.ci[,7]>0&temp.ci[,8]>0) #save(ind_BCa_nt3,file="ind_BCa_nt3.Rdata") ## ---- fig.cap="Figure 5. Boxplots of the bootstrap distribution of the coefficients of the predictors, 3 components BR"---- boxplots.bootpls(modpls.boot3,indices = 2:nrow(temp.ci)) ## ---- fig.cap="Figure 6. Bootstrap 95% confidence intervals, 3 components BR"---- plsRglm::plots.confints.bootpls(temp.ci,prednames=TRUE,indices = 2:nrow(temp.ci)) ## ----------------------------------------------------------------------------- data(file="ind_BCa_nt3") rownames(temp.ci)[ind_BCa_nt3] ## ---- fig.cap="Figure 7. Bootstrap 95% confidence intervals, BCa significant variables, 3 components BR."---- plsRglm::plots.confints.bootpls(temp.ci,prednames=TRUE,indices = (2:nrow(temp.ci))[ind_BCa_nt3[-1]],articlestyle=FALSE) ## ---- fig.cap="Figure 8. BCa Bootstrap 95% confidence intervals, BCa significant variables, 3 components BR."---- plsRglm::plots.confints.bootpls(temp.ci,prednames=TRUE,indices = (2:nrow(temp.ci))[ind_BCa_nt3[-1]],articlestyle=FALSE,typeIC="BCa") ## ----------------------------------------------------------------------------- data("ind_BCa_nt3") colon_sub4 <- colon[c(TRUE,ind_BCa_nt3[-1])] ## ---- eval=FALSE-------------------------------------------------------------- # modpls_sub4 <- plsRbeta(X..Cellules.tumorales~.,data=colon_sub4,nt=10,modele="pls-beta") # #save(modpls_sub4,file="modpls_sub4.Rdata") ## ----------------------------------------------------------------------------- data("modpls_sub4") modpls_sub4 ## ---- fig.cap="Figure 9. Residuals index plot.", fig.keep='last'-------------- # Index plot sfit <- modpls_sub4$FinalModel; rd <- resid(sfit, type="sweighted2"); plot(seq(1,sfit$n), rd, xlab="Subject Index", ylab="Std Weigthed Resid 2", main="Index Plot"); abline(h=0, lty=3); ## ----------------------------------------------------------------------------- library(betareg) # A Half-normal Plot with simulated envelop phat <- predict(sfit, type="response"); phihat <- predict(sfit, type="precision"); tt <- modpls_sub4$tt n <- sfit$n absrds <- list(); for (i in 1:19) { tYwotNA <- rbeta(sfit$n, phat*phihat, (1-phat)*phihat); tsfit <- betareg(tYwotNA~tt, x=TRUE); trd <- residuals(tsfit, type="sweighted2"); absrds[[i]]<-sort(abs(trd)); } lower <- upper <- middle <- rep(0, n); for (j in 1:n) { min <- max <- sum <- absrds[[1]][j]; min; max; for (i in 2:19) { if (min > absrds[[i]][j]) min <- absrds[[i]][j]; if (max < absrds[[i]][j]) max <- absrds[[i]][j]; sum <- sum + absrds[[i]][j]; } lower[j] <- min; upper[j] <- max; middle[j] <- sum / 19; } qnval <- qnorm((1:n+n-1/8) / (2*n+1/2)); ## ----simulated_envelope_submod4, fig.cap="Figure 10. Residuals and simulated envelop.", fig.keep='last'---- plot(qnval, sort(abs(rd)), ylim=range(0,3.5), xlab="Expected", ylab="Observed", main="Half-Normal Plot with Simulated Envelope"); lines(qnval, lower, lty=3); lines(qnval, upper, lty=3); lines(qnval, middle, lty=1, lwd=2); ## ----mod_sub4_nt2_12_beta, fig.cap="Figure 11. Representation of individuals on the plane formed by the first two components."---- plot(modpls_sub4$tt[,1],modpls_sub4$tt[,2],col=plotrix::color.scale(colon[,1],c(0,1,1),c(1,1,0),0),pch=16,ylab="",xlab="") ## ----plot_logit_xpred_yorig_submod4, fig.cap="Figure 12. Observed values versus predicted values on the logit scale.", fig.keep='last'---- plot(binomial()$linkfun(modpls_sub4$ValsPredictY),binomial()$linkfun(orig[,1]),xlab="Valeurs prédites",ylab="Valeurs observées") abline(0,1,lwd=2,lty=2) ## ----plot_xpred_yorig_submod4, fig.cap="Figure 13. Observed values versus predicted values on the original scale.", fig.keep='last'---- plot(modpls_sub4$ValsPredictY,orig[,1],xlim=c(0,1),ylim=c(0,1)) abline(0,1,lwd=2,lty=2)