## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- ## load dataset pilot.data = readRDS(system.file("extdata", "pilotdata.rds", package = "planningML")) dim(pilot.data) ## ----------------------------------------------------------------------------- x = pilot.data[,-ncol(pilot.data)] y = pilot.data$DEPRESSION ## ----------------------------------------------------------------------------- head(x) ## ----------------------------------------------------------------------------- y ## ----------------------------------------------------------------------------- library(planningML) ## ----eval=FALSE, include=TRUE------------------------------------------------- # features = featureselection(x = x, y = y) ## ----include=FALSE------------------------------------------------------------ features = readRDS(system.file("extdata", "features.rds", package = "planningML")) ## ----------------------------------------------------------------------------- summary(features) ## ----eval=FALSE, include=TRUE------------------------------------------------- # output = samplesize(features=features, # method="HCT", m=c(5,10,length(features$features)), effectsize=NULL, # class.prob = NULL, totalnum_features = NULL, threshold=0.1, metric="MCC") ## ----include=FALSE------------------------------------------------------------ output = readRDS(system.file("extdata", "output.rds", package = "planningML")) ## ----------------------------------------------------------------------------- head(output$outtable) ## ----------------------------------------------------------------------------- summary(output) ## ----------------------------------------------------------------------------- plot(output) ## ----------------------------------------------------------------------------- effect_size = readRDS(system.file("extdata", "effectsize.rds", package = "planningML")) effect_size ## ----warning=FALSE------------------------------------------------------------ output2 = samplesize(features = NULL, method="HCT", m=200, effectsize=effect_size, class.prob = 0.5, totalnum_features = 5000, threshold=0.1, metric="MCC") ## ----------------------------------------------------------------------------- summary(output2) ## ----------------------------------------------------------------------------- plot(output2) ## ----------------------------------------------------------------------------- pilotSet = readRDS(system.file("extdata", "pilotSet.rds", package = "planningML")) pilotY = readRDS(system.file("extdata", "pilotY.rds", package = "planningML")) ## ----------------------------------------------------------------------------- dim(pilotSet) ## ----------------------------------------------------------------------------- table(pilotY) ## ----eval=FALSE, include=TRUE------------------------------------------------- # nhamcs_rf_auc <- learningcurve_data(pilotSet, pilotY, method="rf", batchsize = 100, nfold=5, nrepeat=10, class.prob = 0.105, metric="AUC") ## ----include=FALSE------------------------------------------------------------ nhamcs_rf_auc = readRDS(system.file("extdata", "nhamcs_rf_auc.rds", package = "planningML")) ## ----------------------------------------------------------------------------- nhamcs_rf_auc ## ----warning=FALSE------------------------------------------------------------ lc_fit <- fit_learningcurve(nhamcs_rf_auc, testX=seq(10, 1500, 5), target=0.8) ## ----------------------------------------------------------------------------- plot(lc_fit)