## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) suppressMessages({ library(data.table) library(tigger) library(piglet) }) ## ----eval=FALSE--------------------------------------------------------------- # url <- "https://bitbucket.org/yaarilab/piglet/raw/70b7d4491e25e7197e2a94bd890ce5b6e3b506a8/data-raw/HVGERM_OGRDB.fasta" # tmp_dest_file <- file.path(tempdir(), "HVGERM_OGRDB.fasta") # download.file(url, tmp_dest_file, mode = "wb") # # ref_ogrdb <- readIgFasta(tmp_dest_file) # # ref_ogrdb_frw1 <- piglet::artificialFRW1Germline(ref_ogrdb) # ## ----eval=FALSE--------------------------------------------------------------- # asc_frw1 <- inferAlleleClusters(ref_ogrdb_frw1) # allele_table_frw1 <- setDT(asc_frw1@alleleClusterTable)[, .(imgt_allele, new_allele)] # setnames(allele_table_frw1, c("allele", "asc_allele")) ## ----eval=FALSE--------------------------------------------------------------- # allele_table_piglet <- fread("https://bitbucket.org/yaarilab/piglet/raw/70b7d4491e25e7197e2a94bd890ce5b6e3b506a8/data-raw/allele_threshold_table.tsv") # # allele_table_frw1$threshold <- 1e-04 # allele_table_frw1$threshold <- apply(allele_table_frw1, 1, function(x){ # gene <- unlist(strsplit(x[["allele"]],"[*]")) # alleles <- unlist(strsplit(gene[2],"_")) # gene <- gene[1] # alleles <- paste0(gene,"*",alleles) # thresh <- allele_table_piglet[allele %in% alleles, sum(threshold)] # thresh # }) # # allele_table_frw1 <- rbind( # allele_table_frw1[,.(allele,asc_allele,threshold)], # allele_table_piglet[!grepl("V",allele),] # ) # allele_table_frw1[,tag:=substr(allele, 4, 4)] # ## ----eval=FALSE--------------------------------------------------------------- # url <- "https://bitbucket.org/yaarilab/piglet/raw/70b7d4491e25e7197e2a94bd890ce5b6e3b506a8/data-raw/HVGERM_ogrdb_asc_partial.fasta" # tmp_dest_file <- file.path(tempdir(), "HVGERM_ogrdb_asc_partial.fasta") # download.file(url, tmp_dest_file, mode = "wb") # # asc_germline <- readIgFasta(tmp_dest_file) # # allele_table <- fread("https://bitbucket.org/yaarilab/piglet/raw/70b7d4491e25e7197e2a94bd890ce5b6e3b506a8/data-raw/allele_threshold_table_ogrdb_partial.tsv") ## ----eval=FALSE--------------------------------------------------------------- # data <- tigger::AIRRDb # data$v_call_or <- data$v_call # # allele_table_split <- allele_table[, { # parts <- strsplit(allele, "\\*")[[1]] # gene <- parts[1] # alleles <- strsplit(parts[2], "_")[[1]] # expanded <- paste0(gene, "*", alleles) # .(allele = expanded, asc_allele, threshold, tag) # }, by = .I] # # allele_table_split[, I := NULL] # # asc_data <- assignAlleleClusters(data, allele_table_split, v_call = "v_call", from_col = "allele", to_col = "asc_allele") # ## ----eval=FALSE--------------------------------------------------------------- # # # using the asc annotations # # asc_genotype <- inferGenotypeAllele( # asc_data, # allele_threshold_table = allele_table, # call = "v_call", # change to the column call you want to genotype # asc_annotation = TRUE, # if you use iuis names then set to FALSE # single_assignment = TRUE, # if you want to use the single assignment algorithm # find_unmutated = FALSE # change to TRUE to filter mutated reads # # germline_db = asc_germline # Uncomment if you want to filter mutated reads # ) # # # using the biomed annotations, make sure to convert the v_call to the collapsed biomed annotations # allele_table_biomed <- allele_table # allele_table_biomed[, asc_allele := allele] # # allele_table_split <- allele_table_biomed[, { # parts <- strsplit(allele, "\\*")[[1]] # gene <- parts[1] # alleles <- strsplit(parts[2], "_")[[1]] # expanded <- paste0(gene, "*", alleles) # .(allele = expanded, asc_allele, threshold, tag) # }, by = .I] # # allele_table_split[, I := NULL] # # biomed_data <- assignAlleleClusters(data, allele_table_split, v_call = "v_call", from_col = "allele", to_col = "asc_allele") # # asc_genotype_biomed <- inferGenotypeAllele( # biomed_data, # allele_threshold_table = allele_table, # call = "v_call", # change to the column call you want to genotype # asc_annotation = FALSE, # if you use iuis names then set to FALSE # single_assignment = TRUE # ) #