## ---- message = FALSE, warning = FALSE---------------------------------------- library(phylosignal) library(adephylo) library(ape) library(phylobase) data(carni19) ## ----------------------------------------------------------------------------- tre <- read.tree(text=carni19$tre) ## ----------------------------------------------------------------------------- dat <- list() dat$mass <- carni19$bm dat$random <- rnorm(19, sd = 10) dat$bm <- rTraitCont(tre) dat <- as.data.frame(dat) ## ----------------------------------------------------------------------------- p4d <- phylo4d(tre, dat) ## ----fig.width=8, fig.height=5------------------------------------------------ barplot.phylo4d(p4d, tree.type = "phylo", tree.ladderize = TRUE) ## ----------------------------------------------------------------------------- phyloSignal(p4d = p4d, method = "all") ## ----message=FALSE, warning=FALSE, results='hide'----------------------------- phylosim <- phyloSim(tree = tre, method = "all", nsim = 100, reps = 99) ## ----fig.width=12, fig.height=5----------------------------------------------- plot(phylosim, stacked.methods = FALSE, quantiles = c(0.05, 0.95)) ## ----fig.width=5, fig.height=4------------------------------------------------ plot.phylosim(phylosim, what = "pval", stacked.methods = TRUE) ## ----fig.width=5, fig.height=4------------------------------------------------ mass.crlg <- phyloCorrelogram(p4d, trait = "mass") random.crlg <- phyloCorrelogram(p4d, trait = "random") bm.crlg <- phyloCorrelogram(p4d, trait = "bm") plot(mass.crlg) plot(random.crlg) plot(bm.crlg) ## ----fig.width=6, fig.height=5------------------------------------------------ carni.lipa <- lipaMoran(p4d) carni.lipa.p4d <- lipaMoran(p4d, as.p4d = TRUE) barplot.phylo4d(p4d, bar.col=(carni.lipa$p.value < 0.05) + 1, center = FALSE , scale = FALSE) barplot.phylo4d(carni.lipa.p4d, bar.col = (carni.lipa$p.value < 0.05) + 1, center = FALSE, scale = FALSE)