## ----cod_calculation---------------------------------------------------------- library(phylosamp) # Least conservative scenario assuming higher testing rate: vartrack_cod_ratio(psi_v1=0.25, psi_v2=0.3, tau_a=0.1, tau_s=0.5) # Least conservative scenario assuming lower testing rate: vartrack_cod_ratio(psi_v1=0.25, psi_v2=0.3, tau_a=0.05, tau_s=0.4) # Most conservative scenario assuming higher testing rate: vartrack_cod_ratio(psi_v1=0.45, psi_v2=0.3, phi_v1=0.9, phi_v2=0.95, tau_a=0.1, tau_s=0.5) # Most conservative scenario assuming lower testing rate: vartrack_cod_ratio(psi_v1=0.45, psi_v2=0.3, phi_v1=0.9, phi_v2=0.95, tau_a=0.05, tau_s=0.4) ## ----samplesize_calculations-------------------------------------------------- library(phylosamp) # Least conservative scenario with low initial prevalence: vartrack_samplesize_detect(prob=0.75, p_v1=0.01, p0_v1=1/10000, r_v1=0.1, omega=0.8, c_ratio=1.059, sampling_freq="cont") # Least conservative scenario with high initial prevalence: vartrack_samplesize_detect(prob=0.75, p_v1=0.01, p0_v1=1/1000, r_v1=0.1, omega=0.8, c_ratio=1.059, sampling_freq="cont") # Most conservative scenario with low initial prevalence: vartrack_samplesize_detect(prob=0.95, p_v1=0.01, p0_v1=1/10000, r_v1=0.2, omega=0.8, c_ratio=0.779, sampling_freq="cont") # Most conservative scenario with high initial prevalence: vartrack_samplesize_detect(prob=0.95, p_v1=0.01, p0_v1=1/1000, r_v1=0.2, omega=0.8, c_ratio=0.779, sampling_freq="cont") ## ----probability_calculation-------------------------------------------------- library(phylosamp) # Most conservative scenario with low initial prevalence vartrack_prob_detect(n=28, p_v1=0.01, p0_v1=1/10000, r_v1=0.2, omega=0.8, c_ratio=0.779, sampling_freq="cont") # Most conservative scenario with high initial prevalence vartrack_prob_detect(n=28, p_v1=0.01, p0_v1=1/1000, r_v1=0.2, omega=0.8, c_ratio=0.779, sampling_freq="cont") ## ----probability_calculation_2------------------------------------------------ library(phylosamp) ## DETECTION BEFORE REACHING 2% PREVALENCE # Most conservative scenario with low initial prevalence vartrack_prob_detect(n=28, p_v1=0.02, p0_v1=1/10000, r_v1=0.2, omega=0.8, c_ratio=0.779, sampling_freq="cont") # Most conservative scenario with high initial prevalence vartrack_prob_detect(n=28, p_v1=0.02, p0_v1=1/1000, r_v1=0.2, omega=0.8, c_ratio=0.779, sampling_freq="cont") ## DETECTION BEFORE REACHING 5% PREVALENCE # Most conservative scenario with low initial prevalence vartrack_prob_detect(n=28, p_v1=0.05, p0_v1=1/10000, r_v1=0.2, omega=0.8, c_ratio=0.779, sampling_freq="cont") # Most conservative scenario with high initial prevalence vartrack_prob_detect(n=28, p_v1=0.05, p0_v1=1/1000, r_v1=0.2, omega=0.8, c_ratio=0.779, sampling_freq="cont")