--- title: "Getting Started with partycoloR" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Getting Started with partycoloR} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ``` ```{r setup} library(partycoloR) library(dplyr) ``` ## Introduction The `partycoloR` package extracts political party colors and logos from English Wikipedia party pages. This is useful for political scientists and data visualization practitioners who want consistent, recognizable colors for political parties in their charts and graphs. ## Basic Usage ### Extracting Party Colors The main function `get_party_color()` takes Wikipedia URLs and returns the party's primary color as a hex code: ```{r basic-color} # Single party dem_url <- "https://en.wikipedia.org/wiki/Democratic_Party_(United_States)" get_party_color(dem_url) #> "#0015BC" # Multiple parties urls <- c( "https://en.wikipedia.org/wiki/Democratic_Party_(United_States)", "https://en.wikipedia.org/wiki/Republican_Party_(United_States)", "https://en.wikipedia.org/wiki/Green_Party_of_the_United_States" ) get_party_color(urls) #> "#0015BC" "#E81B23" "#17AA5C" ``` ### Extracting Multiple Colors Some parties have more than one official color. Use `all_colors = TRUE` to get all colors: ```{r all-colors} # German CDU has black and orange cdu_url <- "https://en.wikipedia.org/wiki/Christian_Democratic_Union_of_Germany" get_party_color(cdu_url, all_colors = TRUE) #> [[1]] #> [1] "#000000" "#FF6600" ``` ### Extracting Party Logos Use `get_party_logo()` to get the URL of the party's logo image: ```{r logo} get_party_logo(dem_url) #> "https://upload.wikimedia.org/wikipedia/commons/thumb/..." ``` ### Downloading Party Logos You can download logos to a local file using `download_party_logo()`: ```{r download-logo} # Get logo URL and download it logo_url <- get_party_logo(dem_url) download_party_logo(logo_url, "democratic_logo.png") # Or use a pipeline with get_party_logo_by_name() get_party_logo_by_name("SPD", country = "DEU") %>% download_party_logo("spd_logo.svg") ``` Note that the file extension should match the actual image format. Many Wikipedia logos are SVGs, so check the URL to determine the correct extension. ### Getting Both at Once For efficiency, use `get_party_info()` to extract both color and logo in a single request: ```{r party-info} get_party_info(urls) #> # A tibble: 3 x 3 #> url color logo_url #> #> 1 https://en.wikipedia.org/wiki/Democratic_Party_(Unite... #0015BC https://... #> 2 https://en.wikipedia.org/wiki/Republican_Party_(Unite... #E81B23 https://... #> 3 https://en.wikipedia.org/wiki/Green_Party_of_the_Unit... #17AA5C https://... ``` ## Working with dplyr The functions are designed to work seamlessly with `dplyr::mutate()`: ```{r dplyr} parties <- tibble( party = c("Democrats", "Republicans", "Greens"), wiki_url = c( "https://en.wikipedia.org/wiki/Democratic_Party_(United_States)", "https://en.wikipedia.org/wiki/Republican_Party_(United_States)", "https://en.wikipedia.org/wiki/Green_Party_of_the_United_States" ) ) parties %>% mutate( color = get_party_color(wiki_url), logo = get_party_logo(wiki_url) ) ``` ### Working with Multiple Colors When using `all_colors = TRUE`, the result is a list-column. Use `purrr` functions to extract specific colors: ```{r multiple-colors-dplyr} library(purrr) german_parties <- tibble( party = c("CDU", "SPD"), wiki_url = c( "https://en.wikipedia.org/wiki/Christian_Democratic_Union_of_Germany", "https://en.wikipedia.org/wiki/Social_Democratic_Party_of_Germany" ) ) # Extract all colors as a list-column, then extract individual colors german_parties %>% mutate( all_colors = get_party_color(wiki_url, all_colors = TRUE), color_1 = map_chr(all_colors, pluck, 1, 1, .default = NA_character_), color_2 = map_chr(all_colors, pluck, 1, 2, .default = NA_character_) ) #> # A tibble: 2 x 5 #> party wiki_url all_colors color_1 color_2 #> #> 1 CDU https://en.wikipedia.org/wiki/Chris.. #000000 #FF6600 #> 2 SPD https://en.wikipedia.org/wiki/Soci.. #E3000F NA ``` Alternatively, unnest to long format (one row per color): ```{r unnest-colors} german_parties %>% mutate(all_colors = get_party_color(wiki_url, all_colors = TRUE)) %>% tidyr::unnest_longer(all_colors) %>% tidyr::unnest_longer(all_colors, values_to = "color") #> # A tibble: 3 x 3 #> party wiki_url color #> #> 1 CDU https://en.wikipedia.org/wiki/Christian_Democratic... #000000 #> 2 CDU https://en.wikipedia.org/wiki/Christian_Democratic... #FF6600 #> 3 SPD https://en.wikipedia.org/wiki/Social_Democratic_Pa... #E3000F ``` ## Using Party Facts Integration If you don't have Wikipedia URLs, you can look up parties by name using the [Party Facts](https://partyfacts.herokuapp.com/) database integration. ### Download Party Facts Data ```{r partyfacts-download} # Download the current Party Facts Wikipedia dataset pf_data <- get_partyfacts_wikipedia() head(pf_data) #> # A tibble: 6 x 8 #> country partyfacts_id url name_short name name_native year_founded #> #> 1 AFG 6641 https://... NA Afgh... NA 1966 #> ... ``` ### Look Up Parties by Name ```{r lookup} # Search for a party by name lookup_party_url("SPD", country = "DEU") #> # A tibble: 1 x 8 #> country partyfacts_id url name_short name #> #> 1 DEU 1375 https://en.wikipedia.org/wiki/... SPD Social... # Search across all countries lookup_party_url("Labour") ``` ### Convenience Function Use `get_party_color_by_name()` to combine lookup and color extraction: ```{r by-name} # Get SPD color directly by name get_party_color_by_name("SPD", country = "DEU") #> "#E3000F" # If multiple parties match, returns a tibble with all matches get_party_color_by_name("Labour") #> # A tibble: 12 x 9 #> country partyfacts_id url name_short name ... color #> ... ``` ## Visualization Example Here's how to use party colors in a ggplot2 visualization: ```{r visualization, fig.width=7, fig.height=4} library(ggplot2) # Example data: German 2021 election results german_parties <- tibble( party = c("SPD", "CDU/CSU", "Greens", "FDP", "AfD", "Left"), vote_share = c(25.7, 24.1, 14.8, 11.5, 10.3, 4.9), wiki_url = c( "https://en.wikipedia.org/wiki/Social_Democratic_Party_of_Germany", "https://en.wikipedia.org/wiki/Christian_Democratic_Union_of_Germany", "https://en.wikipedia.org/wiki/Alliance_90/The_Greens", "https://en.wikipedia.org/wiki/Free_Democratic_Party_(Germany)", "https://en.wikipedia.org/wiki/Alternative_for_Germany", "https://en.wikipedia.org/wiki/The_Left_(Germany)" ) ) # Get party colors german_parties <- german_parties %>% mutate(color = get_party_color(wiki_url)) # Create bar chart with party colors ggplot(german_parties, aes(x = reorder(party, -vote_share), y = vote_share)) + geom_col(fill = german_parties$color) + labs( title = "German Federal Election 2021", x = NULL, y = "Vote Share (%)" ) + theme_minimal() ``` ## Error Handling The functions handle errors gracefully: ```{r errors} # Invalid URLs return NA get_party_color("https://not-wikipedia.com/page") #> NA # Non-existent pages return NA get_party_color("https://en.wikipedia.org/wiki/Nonexistent_Party_12345") #> NA # Mixed valid and invalid URLs urls <- c( "https://en.wikipedia.org/wiki/Democratic_Party_(United_States)", NA, "invalid_url" ) get_party_color(urls) #> "#0015BC" NA NA ``` ## Caching The Party Facts data is cached in the R session to avoid repeated downloads: ```{r caching} # First call downloads the data pf_data <- get_partyfacts_wikipedia() # Subsequent calls use the cache (faster) pf_data <- get_partyfacts_wikipedia() # Clear the cache if needed clear_partycolor_cache() ``` ## Tips and Best Practices 1. **Batch requests**: When processing many parties, pass all URLs to `get_party_color()` at once rather than calling it in a loop. 2. **Cache Party Facts data**: If you'll be doing multiple lookups, call `get_partyfacts_wikipedia()` once and pass the result to `lookup_party_url()`. 3. **Handle missing data**: Always check for NA values in the results, as some Wikipedia pages may not have color information or may have unexpected formatting. 4. **Wikipedia changes**: The scraping depends on Wikipedia's HTML structure. If results seem wrong, the Wikipedia page format may have changed. ## Related Resources - [Party Facts](https://partyfacts.herokuapp.com/) - Party Facts links datasets on political parties across a wide range of social science datasets - [ParlGov](https://www.parlgov.org/) - Database on parties, elections and cabinets from EU and OECD democracies - [ParlGov Dashboard](https://lukas-warode.shinyapps.io/ParlGov_Dashboard/) - R Shiny dashboard with data from ParlGov and party colors from `partycoloR`