## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) library(nycOpenData) library(ggplot2) library(dplyr) ## ----small-sample------------------------------------------------------------- small_sample <- nyc_slash_stab(limit = 100) small_sample # Seeing what columns are in the dataset colnames(small_sample) unique(small_sample$facility) ## ----filter-incident---------------------------------------------------------- incident_slash_stab <- nyc_slash_stab(limit = 3, filters = list(incident_type = "Stabbing")) incident_slash_stab # Checking to see the filtering worked unique(incident_slash_stab$incident_type) ## ----slashing and stabbing---------------------------------------------------- # Creating the datasets slash <- nyc_slash_stab(limit = 50, filters = list(facility = "AMKC", incident_type = "Slashing")) stab <- nyc_slash_stab(limit = 50, filters = list(facility = "AMKC", incident_type = "Stabbing")) # Calling head of our new dataset head(slash) head(stab) # Quick check to make sure our filtering worked nrow(slash) nrow((stab)) unique(slash$facility) unique(stab$facility) ## ----fig.cap="This figure shows incident types by facility."------------------ data <- nyc_slash_stab(limit = 100) %>% filter(incident_type %in% c("Slashing", "Stabbing")) %>% count(facility, incident_type, name = "count") ggplot(data, aes(x = incident_type, y = count, fill = facility)) + geom_col(position = "dodge") + theme_minimal() + labs( title = "Slashing vs Stabbing Incidents by Facility", x = "Incident Type", y = "Number of Incidents", fill = "Facility" )