Type: Package
Title: Nonparametric Models for Longitudinal Data
Version: 1.0.0
Date: 2018-02-12
Author: Xin Tian, Colin Wu
Maintainer: Xin Tian <tianxtt@gmail.com>
Description: Support the book: Wu CO and Tian X (2018). Nonparametric Models for Longitudinal Data. Chapman & Hall/CRC (to appear); and provide fit for using global and local smoothing methods for the conditional-mean and conditional-distribution based models with longitudinal Data.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
BugReports: https://github.com/npmldabook/npmlda/issues
URL: https://github.com/npmldabook/npmlda/
Encoding: UTF-8
LazyData: true
Depends: R (≥ 3.0)
Imports: splines
RoxygenNote: 6.0.1
NeedsCompilation: no
Packaged: 2018-02-12 05:26:15 UTC; tianx
Repository: CRAN
Date/Publication: 2018-02-12 12:34:47 UTC

BDIdata dataset

Description

This dataset includes 557 depressed patients (total 7117 observations) in the cognitive behavior therapy arm in the Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD) study.

Usage

data(BDIdata)

Format

A data frame with 7117 rows and 5 variables.

Details

References

  1. Wu, C. O., Tian, X. and Bang, H. A varying-coefficient model for the evaluation of time-varying concomitant intervention effects in longitudinal studies. Statistics in Medicine, 27:3042-3056, 2008.

  2. Wu, C. O., Tian, X. and Jiang, W. A shared parameter model for the estimation of longitudinal concomitant intervention effects Biostatistics, 12(4):737-749, 2011.


BMACS CD4 dataset

Description

This dataset is from the Baltimore site of the Multi-center AIDS Cohort Study (BMACS), which included 400 homosexual men who were infected by the human immunodeficiency virus (HIV) between 1984 and 1991.

Usage

data(BMACS)

Format

A data frame with 1817 rows and 6 variables.

Details

References

Kaslow, R. A., Ostrow, D. G., Detels, R., Phair, J. P., Polk, B. F. and Rinaldo, C. R. The Multicenter AIDS Cohort Study: rationale, organization and selected characteristics of the participants. American Journal of Epidemiology, 126:310-318, 1987.


Leave one-subject cross-validation score for local linear fit

Description

Leave one-subject cross-validation score for local linear fit

Usage

CVlm(Xvec, Yvec, bw, ID, Wt)

Arguments

Xvec, Yvec

numeric vectors of data values, Xvec and Yvec must have the same length.

bw

a bandwidth of the Epanechnikov kernel

ID

subject ID of the data value

Wt

a weight vector, may be subject-specific. a weight vector or a constant. For longitudinal data, Wt=1/N corresponds to measurement uniform weight and Wt=1/(nni) corresponds subject uniform weight.


Leave one-subject cross-validation score for spline fit

Description

Leave one-subject cross-validation score for spline fit

Usage

CVspline(Xvec, Yvec, ID, nKnots, Degree, Wt)

Arguments

Xvec, Yvec

numeric vectors of data values, Xvec and Yvec must have the same length.

ID

subject ID of the data value

nKnots

number of equally-spaced knots

Degree

degree of polynomial splines

Wt

a weight vector. For longitudinal data, Wt=1/N corresponds to measurement uniform weight and Wt=1/(nni) corresponds subject uniform weight.

References

Wu, C.O. and Tian, X. Nonparametric Models for Longitudinal Data. Chapman & Hall/CRC. To appear.


HSCT dataset

Description

This dataset consists of 20 patients with hematologicmalignancies who had allogeneic hematopoietic stem cell transplantation (HSCT) between 2006 and 2009 at the National Institutes of Health (NIH). The variables are as follows:

Usage

data(HSCT)

Format

A data frame with 271 rows and 8 variables.

Details

References

Melenhorst, J.J., Tian, X., Xu, D., Sandler, N.G., Scheinberg, P., Biancotto, A., et al. Cytopenia and leukocyte recovery shape cytokine fluctuations after myeloablative allogeneic hematopoietic stem cell transplantation. Haematologica, 97(6):867-73, 2012.


Biweight kernel

Description

Biweight kernel

Usage

Kh.Bw(datavec, Bndwdth)

Arguments

datavec

a numeric vector

Bndwdth

a bandwidth of the kernel

Value

kernel function result

Examples

# same usage as Kh.Ep

Epanechnikov Kernel

Description

Epanechnikov Kernel

Usage

Kh.Ep(datavec, Bndwdth)

Arguments

datavec

a numeric vector

Bndwdth

a bandwidth

Value

kernel function result

Examples

Kh.Ep(2:7,5)

Normal kernel

Description

Normal kernel

Usage

Kh.Nm(datavec, Bndwdth)

Arguments

datavec

a numeric vector

Bndwdth

a bandwidth of the kernel

Value

kernel function result

Examples

Kh.Nm(2:7,5)

Local linear fit with Epanechnikov kernel

Description

Local linear fit with Epanechnikov kernel

Usage

LocalLm(Xint, Xvec, Yvec, bw, Wt = 1)

Arguments

Xint

a vector of x interval to generate the local linear fit

Xvec, Yvec

numeric vectors of data values, Xvec and Yvec must have the same length.

bw

a bandwidth of the kernel

Wt

a weight vector

Examples

data(BMACS)
Time.int<- seq(0.1,5.9,  by=0.1)
LocalFit.Y <- with(BMACS, LocalLm(Time.int, Time, CD4, bw=0.9, Wt=1))

Local linear fit at X0 with Epanechnikov kernel

Description

Local linear fit at X0 with Epanechnikov kernel

Usage

LocalLm.X0(Xvec, Yvec, X0, Bndwdth, Wt = 1)

Arguments

Xvec, Yvec

numeric vectors of data values, Xvec and Yvec must have the same length.

X0

a given value

Bndwdth

a bandwidth of the kernel

Wt

a weight vector or a constant. For longitudinal data, Wt=1/N corresponds to measurement uniform weight and Wt=1/(nni) corresponds subject uniform weight.

Examples

 # see usage of LocalLm

Title Nadaraya-Watson Kernel estimator at x0

Description

Title Nadaraya-Watson Kernel estimator at x0

Usage

NW.WtKernel(Xvec, Yvec, X0, Kernel = "Ep", Bndwdth, Wt = 1)

Arguments

Xvec, Yvec

numeric vectors of data values, Xvec and Yvec must have the same length.

X0

a given value

Kernel

a character string indicating which kernel function is to be used. Use of "Ep", "Bw", or "Nm" for Epanechnikov, Biweight or Normal kernel function.

Bndwdth

a bandwidth of the kernel

Wt

a weight vector or a constant. For longitudinal data, Wt=1/N corresponds to measurement uniform weight and Wt=1/(nni) corresponds subject uniform weight.

Value

The kernel estimator at x0

References

  1. Fan, J. and Gijbels, I. Local Polynomial Modeling and Its Applications. Chapman & Hall, London, United Kingdom, 1996.

  2. Wu, C.O. and Tian, X. Nonparametric Models for Longitudinal Data. Chapman & Hall/CRC. To appear.

Examples

X <- seq(0, 1, len=100)
Y <- (X- 0.5)^3 - 2*(X-0.5)^2+ rnorm(100, 0, 0.1)
NW.WtKernel(X, Y,  X0=0.5, Kernel="Ep", Bndwdth=0.3, Wt=1 )
NW.WtKernel(X, Y,  X0=0.5, Kernel="Nm", Bndwdth=0.3, Wt=1 )

Polynomial-spline fit with equally-spaced knots

Description

Polynomial-spline fit with equally-spaced knots

Usage

Spline.fit(Xint, Xvec, Yvec, nKnots = 2, Degree = 3, Wt = 1)

Arguments

Xint

a vector of x interval to generate the local linear fit

Xvec, Yvec

numeric vectors of data values, Xvec and Yvec must have the same length.

nKnots

number of equally-spaced knots

Degree

degree of polynomial splines

Wt

a weight vector or a constant. For longitudinal data, Wt=1/N corresponds to measurement uniform weight and Wt=1/(nni) corresponds subject uniform weight.

References

Wu, C.O. and Tian, X. Nonparametric Models for Longitudinal Data. Chapman & Hall/CRC. To appear.


Nadaraya-Watson Kernel estimator

Description

Nadaraya-Watson Kernel estimator

Usage

kernel.fit(Xint, Xvec, Yvec, bw, Kernel = "Ep", Wt = 1)

Arguments

Xint

a vector of x interval to generate the local linear fit

Xvec, Yvec

numeric vectors of data values, Xvec and Yvec must have the same length.

bw

a bandwidth of the kernel

Kernel

a character string indicating which kernel function is to be used. Use of "Ep", "Bw", or "Nm" for Epanechnikov, Biweight or Normal kernel function.

Wt

a weight vector

References

  1. Fan, J. and Gijbels, I. Local Polynomial Modeling and Its Applications. Chapman & Hall, London, United Kingdom, 1996.

  2. Wu, C.O. and Tian, X. Nonparametric Models for Longitudinal Data. Chapman & Hall/CRC. To appear.

Examples

X <- seq(0, 1, len=100)
Y <- (X- 0.5)^3 - 2*(X-0.5)^2+ rnorm(100, 0, 0.1)
kernel.fit(seq(0,1,0.1), X, Y, Kernel="Ep", bw=0.1, Wt=1   )