## ------------------------------------------------------------------------ library(caret) library(ggplot2) library(nonet) ## ------------------------------------------------------------------------ dataframe <- data.frame(banknote_authentication) head(dataframe) ## ------------------------------------------------------------------------ index <- createDataPartition(dataframe$class, p=0.75, list=FALSE) trainSet <- dataframe[ index,] testSet <- dataframe[-index,] ## ------------------------------------------------------------------------ control <- rfeControl(functions = rfFuncs, method = "repeatedcv", repeats = 3, verbose = FALSE) ## ------------------------------------------------------------------------ outcomeName <- 'entropy' predictors <- c("variance", "skewness", "class") ## ------------------------------------------------------------------------ banknote_lm_first <- train(trainSet[,predictors],trainSet[,outcomeName],method='lm') ## ------------------------------------------------------------------------ predictions_lm_first <- predict.train(object=banknote_lm_first, testSet[,predictors]) ## ------------------------------------------------------------------------ index <- createDataPartition(dataframe$class, p=0.75, list=FALSE) trainSet <- dataframe[ index,] testSet <- dataframe[-index,] ## ------------------------------------------------------------------------ control <- rfeControl(functions = rfFuncs, method = "repeatedcv", repeats = 3, verbose = FALSE) ## ------------------------------------------------------------------------ outcomeName <- 'entropy' predictors <- c("curtosis", "skewness", "class") ## ------------------------------------------------------------------------ banknote_lm_second <- train(trainSet[,predictors],trainSet[,outcomeName],method='lm') ## ------------------------------------------------------------------------ predictions_lm_second <- predict.train(object=banknote_lm_second, testSet[,predictors]) ## ------------------------------------------------------------------------ Stack_object <- list(predictions_lm_first, predictions_lm_second) ## ------------------------------------------------------------------------ names(Stack_object) <- c("lm_first", "lm_second") ## ------------------------------------------------------------------------ prediction_nonet <- nonet_ensemble(Stack_object, "lm_first") ## ------------------------------------------------------------------------ Actual_Pred <- data.frame(cbind(actuals = testSet[,outcomeName], predictions = prediction_nonet)) head(Actual_Pred) ## ------------------------------------------------------------------------ accuracy <- cor(Actual_Pred) accuracy ## ---- warning = FALSE---------------------------------------------------- plot_first <- nonet_plot(Actual_Pred$actuals, Actual_Pred$predictions, Actual_Pred, plot_type = "hist") plot_first ## ---- warning = FALSE---------------------------------------------------- plot_second <- nonet_plot(Actual_Pred$predictions, Actual_Pred$actuals, Actual_Pred, plot_type = "hist") plot_second