--- title: "Getting started with nonParQuantileCausality" output: rmarkdown::html_vignette bibliography: references.bib vignette: > %\VignetteIndexEntry{Getting started with nonParQuantileCausality} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- We follow the testing framework introduced in @balcilar2016gold and @balcilar2016ePUfx. ```{r} library(nonParQuantileCausality) data(gold_oil) # use first 500 rows gold_oil <- gold_oil[1:501,] q_grid <- seq(0.05, 0.95, by = 0.05) # Causality in conditional mean (does Oil_t-1 cause Gold_t?) res_mean <- np_quantile_causality( x = gold_oil$Oil, y = gold_oil$Gold, type = "mean", q = q_grid ) res_mean # Causality in conditional variance res_var <- np_quantile_causality( x = gold_oil$Oil, y = gold_oil$Gold, type = "variance", q = q_grid ) res_var # Plot (with 5% critical value line); returns a ggplot object invisibly plot(res_mean) plot(res_var) ```