## ----specific-dataset, echo=TRUE---------------------------------------------- library(nomisr) y <- nomis_data_info("NM_893_1") tibble::glimpse(y) ## ----specific-dataset-exam, eval=FALSE---------------------------------------- # library(dplyr, warn.conflicts = F) # # y$annotations.annotation %>% class() # # y$annotations.annotation %>% length() # # y$annotations.annotation[[1]] %>% class() # # y %>% pull(annotations.annotation) %>% class() # # y %>% pull(annotations.annotation) %>% .[[1]] %>% class() # # y %>% pull(annotations.annotation) %>% purrr::pluck() %>% class() # # ## Unnesting list columns # y %>% tidyr::unnest(annotations.annotation) %>% glimpse() ## ----data-searching, eval=FALSE----------------------------------------------- # a <- nomis_search(name = '*jobseekers*', keywords = 'Claimants') # # tibble::glimpse(a) # # a %>% tidyr::unnest(components.attribute) %>% glimpse() # # b <- nomis_search(keywords = c('Claimants', '*Year*')) # # tibble::glimpse(b) # # b %>% tidyr::unnest(components.attribute) %>% glimpse() # ## ----overview, eval=FALSE----------------------------------------------------- # q <- nomis_overview("NM_1650_1") # # q %>% tidyr::unnest(name) %>% glimpse() # ## ----overview-select, eval=FALSE---------------------------------------------- # s <- nomis_overview("NM_1650_1", select = c("units", "keywords")) # # s %>% tidyr::unnest(name) %>% glimpse() ## ----get-metadata, eval=FALSE------------------------------------------------- # a <- nomis_get_metadata(id = "NM_893_1") ## ----concepts, eval=FALSE----------------------------------------------------- # b <- nomis_get_metadata(id = "NM_893_1", concept = "GEOGRAPHY") ## ----geographies, eval=FALSE-------------------------------------------------- # c <- nomis_get_metadata(id = "NM_893_1", concept = "geography", type = "type") ## ----constituencies, eval=FALSE----------------------------------------------- # d <- nomis_get_metadata(id = "NM_893_1", # concept = "geography", type = "TYPE460") # ## ----ccg, eval=FALSE---------------------------------------------------------- # z <- nomis_get_data(id = "NM_893_1", time = "latest", geography = "TYPE266") ## ----NM_893_1-gorton-withington, eval=FALSE----------------------------------- # x <- nomis_get_data(id = "NM_893_1", time = "latest", # geography = c("1929380119", "1929380120")) ## ----jsa-claimaints, eval=FALSE----------------------------------------------- # library(ggplot2) # library(dplyr) # library(nomisr) # # jsa <- nomis_get_data(id = "NM_1_1", time = "2018-01-2021-10", # geography = "TYPE480", measures=20201, # sex=c(5,6), item = 1, tidy = TRUE) # # jsa <- jsa %>% # mutate(date = as.Date(paste0(date, "-01")), # obs_value = obs_value/100) # # theme_set(theme_bw()) # # p_jsa <- ggplot(jsa, aes(x = date, y = obs_value, colour = sex_name)) + # geom_line(size = 1.15) + # scale_colour_viridis_d(end = 0.75, begin = 0.1, name = "Gender") + # scale_x_date(breaks = "6 months", date_labels = "%b %Y") + # scale_y_continuous(labels = scales::percent) + # theme(axis.text.x = element_text(angle = 30, hjust = 1, size = 8), # legend.position = "bottom") + # labs(x = "Date", y= "JSA Claimants (Percentage of Workforce)") + # facet_wrap(~geography_name, scales = "free_y") # # p_jsa