--- title: "README" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{README} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # A new Integrated Mean Variance Correlation and Its Use in High-Dimensional Data Analysis The goal of package `newIMVC` is to provide an easy way to implement the proposed methods in Xiong et al. (2024), which include a new robust correlation between continuous variables and its use in hypothesis test, feature screening and false discovery rate control. ## Installation To install `newIMVC`, ``` r install.packages("newIMVC") ``` ## Example Here are examples showing how to use main functions in package `newIMVC`. ```{r example} library("newIMVC") library("mvtnorm") ###The new IMVC measure### n=200 x=rnorm(n) y=x^2+rt(n,2) IMVC(y,x,K=10,type="nonlinear") ###IMVC based feature screening### n=200 p=300 pho1=0.8 mean_x=rep(0,p) sigma_x=matrix(NA,nrow = p,ncol = p) for (i in 1:p) { for (j in 1:p) { sigma_x[i,j]=pho1^(abs(i-j)) } } x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol") x1=x[,1] x2=x[,2] x3=x[,12] x4=x[,22] y=2*x1+0.5*x2+3*x3*ifelse(x3<0,1,0)+2*x4+rnorm(n) IMVCS(y,x,K=5,d=round(n/log(n)),type="nonlinear") ###IMVC based hypothesis test### n=100 x=rnorm(n) y=2*x+rt(n,2) IMVCT(x,y,K=5,type = "linear") y=2*cos(x)+rt(n,2) IMVCT(x,y,K=5,type = "nonlinear",num_per = 100) ###IMVC based FDR control### n=200 p=100 pho1=0.5 mean_x=rep(0,p) sigma_x=matrix(NA,nrow = p,ncol = p) for (i in 1:p) { for (j in 1:p) { sigma_x[i,j]=pho1^(abs(i-j)) } } x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol") x1=x[,1] x2=x[,2] x3=x[,3] x4=x[,4] x5=x[,5] y=x1+x2+x3+x4+x5+rnorm(n) IMVCFDR(y,x,K=5,numboot=100,timeboot=50,true_signal=c(1,2,3,4,5),null_method="hist",alpha=0.2) ``` ## References Wei Xiong, Han Pan, Hengjian Cui. (2024) “A Robust Integrated Mean Variance Correlation and Its Use in High Dimensional Data Analysis.”