## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----message=FALSE------------------------------------------------------------ library(networkABC) ## ---- cache=TRUE-------------------------------------------------------------- net<-network_gen(100,0.33) ## ---- messages=FALSE, fig.width=8, fig.height=8------------------------------- require(network) plot(network(net$network)) ## ----------------------------------------------------------------------------- f<-function(a){ a<-a[!is.nan(a)] } ## ---- cache=TRUE-------------------------------------------------------------- set.seed(1234) clco<-rep(0,500) for(i in 1:500){ N<-network_gen(500,.33)$net N<-N+t(N) clco[i]<-mean(f(abs(networkABC::clusteringCoefficient(N)))) } ## ----------------------------------------------------------------------------- mean(clco) ## ----------------------------------------------------------------------------- sd(clco) ## ---- message=FALSE, fig.width=8, fig.height=8-------------------------------- ggplot2::qplot(clco) ## ---- cache=TRUE-------------------------------------------------------------- set.seed(123) M<-matrix(rnorm(30),10,3) result<-abc(data=M) ## ---- fig.width=8, fig.height=8----------------------------------------------- networkABC::showHp(result) ## ---- fig.width=8, fig.height=8----------------------------------------------- showNp(result) ## ---- fig.width=8, fig.height=8----------------------------------------------- showNetwork(result,0.3) ## ---- fig.width=8, fig.height=8----------------------------------------------- hist(result$dist) ## ---- eval=FALSE-------------------------------------------------------------- # result<-abc(data=M, # clust_coeffs=0.33, #you can specify more than one clustering coefficient # tolerance=3.5, #maximal distance between simulated and real data # # to accept the network # number_hubs=3,#the number of hubs # iterations=10, #number of iterations # number_networks=1000000,#number of network simulated at each iteration # hub_probs=NA,#specify the a priori probabilty for each gene to be a hub # neighbour_probs=NA,#specify the a priori probability for each couple # #of gene to be linked # is_probs=1)#set this last option to one.