## ----knitr-setup, include = FALSE--------------------------------------------- knitr::opts_chunk$set(fig.align = "center", fig.width = 5, fig.height = 4, dpi = 100) ## ----vis-miss----------------------------------------------------------------- library(naniar) vis_miss(airquality) ## ----gg-miss-upset------------------------------------------------------------ gg_miss_upset(airquality) ## ----upset-plot-riskfactors--------------------------------------------------- gg_miss_upset(riskfactors) ## ----gg-miss-upset-n-var-miss------------------------------------------------- # how many missings? n_var_miss(riskfactors) gg_miss_upset(riskfactors, nsets = n_var_miss(riskfactors)) ## ----gg-miss-upset-n-sets----------------------------------------------------- gg_miss_upset(riskfactors, nsets = 10, nintersects = 50) ## ----gg-miss-upset-nintersect-NA---------------------------------------------- gg_miss_upset(riskfactors, nsets = 10, nintersects = NA) ## ----ggplot-geom-miss-point--------------------------------------------------- library(ggplot2) # using regular geom_point() ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_point() library(naniar) # using geom_miss_point() ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_miss_point() # Facets! ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_miss_point() + facet_wrap(~Month) # Themes ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_miss_point() + theme_dark() ## ----gg-miss-var-------------------------------------------------------------- gg_miss_var(airquality) library(ggplot2) gg_miss_var(airquality) + labs(y = "Look at all the missing ones") ## ----gg-miss-var-show-pct----------------------------------------------------- gg_miss_var(airquality, show_pct = TRUE) ## ----gg-miss-var-group-------------------------------------------------------- gg_miss_var(airquality, facet = Month) ## ----gg-miss-case------------------------------------------------------------- gg_miss_case(airquality) gg_miss_case(airquality) + labs(x = "Number of Cases") ## ----gg-miss-case-order-by-case----------------------------------------------- gg_miss_case(airquality, order_cases = TRUE) ## ----gg-miss-case-group------------------------------------------------------- gg_miss_case(airquality, facet = Month) ## ----gg-miss-fct-------------------------------------------------------------- gg_miss_fct(x = riskfactors, fct = marital) library(ggplot2) gg_miss_fct(x = riskfactors, fct = marital) + labs(title = "NA in Risk Factors and Marital status") # using group_by library(dplyr) riskfactors %>% group_by(marital) %>% miss_var_summary() ## ----------------------------------------------------------------------------- gg_miss_fct(oceanbuoys, year) # to load who data library(tidyr) gg_miss_fct(who, year) ## ----gg-miss-span------------------------------------------------------------- # data method miss_var_span(pedestrian, hourly_counts, span_every = 3000) gg_miss_span(pedestrian, hourly_counts, span_every = 3000) # works with the rest of ggplot gg_miss_span(pedestrian, hourly_counts, span_every = 3000) + labs(x = "custom") gg_miss_span(pedestrian, hourly_counts, span_every = 3000) + theme_dark() ## ----gg-miss-span-group------------------------------------------------------- gg_miss_span(pedestrian, hourly_counts, span_every = 3000, facet = sensor_name) ## ----gg-miss-case-cumsum------------------------------------------------------ gg_miss_case_cumsum(airquality) library(ggplot2) gg_miss_case_cumsum(riskfactors, breaks = 50) + theme_bw() ## ----gg-miss-var-cumsum------------------------------------------------------- gg_miss_var_cumsum(airquality) ## ----gg-miss-which------------------------------------------------------------ gg_miss_which(airquality)