Maximum likelihood estimates are obtained via an EM algorithm with either a first-order or a fully exponential Laplace approximation as documented by Broatch and Karl (2018) <doi:10.48550/arXiv.1710.05284>, Karl, Yang, and Lohr (2014) <doi:10.1016/j.csda.2013.11.019>, and by Karl (2012) <doi:10.1515/1559-0410.1471>. Karl and Zimmerman <doi:10.1016/j.jspi.2020.06.004> use this package to illustrate how the home field effect estimator from a mixed model can be biased under nonrandom scheduling.
| Version: | 1.2-4 | 
| Depends: | R (≥ 3.2.0), Matrix | 
| Imports: | numDeriv, methods, stats, utils, MASS | 
| Published: | 2023-01-08 | 
| DOI: | 10.32614/CRAN.package.mvglmmRank | 
| Author: | Andrew T. Karl | 
| Maintainer: | Andrew T. Karl <akarl at asu.edu> | 
| License: | GPL-2 | 
| NeedsCompilation: | no | 
| Materials: | NEWS | 
| In views: | MixedModels, SportsAnalytics | 
| CRAN checks: | mvglmmRank results | 
| Reference manual: | mvglmmRank.html , mvglmmRank.pdf | 
| Package source: | mvglmmRank_1.2-4.tar.gz | 
| Windows binaries: | r-devel: mvglmmRank_1.2-4.zip, r-release: mvglmmRank_1.2-4.zip, r-oldrel: mvglmmRank_1.2-4.zip | 
| macOS binaries: | r-release (arm64): mvglmmRank_1.2-4.tgz, r-oldrel (arm64): mvglmmRank_1.2-4.tgz, r-release (x86_64): mvglmmRank_1.2-4.tgz, r-oldrel (x86_64): mvglmmRank_1.2-4.tgz | 
| Old sources: | mvglmmRank archive | 
Please use the canonical form https://CRAN.R-project.org/package=mvglmmRank to link to this page.