## ---- message = FALSE--------------------------------------------------------- library(mvMonitoring) fault1A_xts <- mspProcessData(faults = "A1", period = 7 * 24 * 60, faultStartIndex = 8500, startTime = "2015-05-16 10:00:00 CST") str(fault1A_xts) ## ----------------------------------------------------------------------------- train1A_xts <- fault1A_xts[1:8461,] # This function will run in 13 seconds on the author's machine. train1A_ls <- mspTrain(data = train1A_xts[,-1], labelVector = train1A_xts[,1], trainObs = 3 * 24 * 60, updateFreq = 1 * 24 * 60, Dynamic = TRUE, lagsIncluded = 0:1, faultsToTriggerAlarm = 5) ## ---- message = FALSE--------------------------------------------------------- library(xts) test1A_xts <- fault1A_xts[8460:8520, -1] lagTest1A_xts <- lag.xts(test1A_xts, 0:1) lagTest1A_xts <- cbind(fault1A_xts[8461:8520,1], lagTest1A_xts[-1,]) head(lagTest1A_xts) ## ----------------------------------------------------------------------------- monitor1A_xts <- mspMonitor(observations = lagTest1A_xts[,-1], labelVector = lagTest1A_xts[,1], trainingSummary = train1A_ls$TrainingSpecs) head(monitor1A_xts) ## ----------------------------------------------------------------------------- alarm1A_xts <- monitor1A_xts for(i in 1:nrow(alarm1A_xts)){ if(i < (5 + 1)){ alarm1A_xts[1:i,] <- mspWarning(alarm1A_xts[1:i,]) }else{ alarm1A_xts[(i - 5):i,] <- mspWarning(alarm1A_xts[(i - 5):i,]) } } ## ---- fig.width = 5, out.width = '100%'--------------------------------------- plot(alarm1A_xts[, ncol(alarm1A_xts)], main = "Alarm Codes for Test Data")