## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- # Load the multivarious package library(multivarious) # Create a synthetic dataset set.seed(42) X <- matrix(rnorm(200), 10, 20) # Perform SVD on the dataset svdfit <- svd(X) # Create a bi_projector object p <- bi_projector(svdfit$v, s = svdfit$u %*% diag(svdfit$d), sdev = svdfit$d) # Generate new data to project onto the same subspace as the original data new_data <- matrix(rnorm(5 * 20), 5, 20) projected_data <- project(p, new_data) print(projected_data) ## ----------------------------------------------------------------------------- # Load iris dataset and select the first four columns data(iris) X <- iris[, 1:4] # Compute SVD using the base method and 3 components fit <- svd_wrapper(X, ncomp = 3, preproc = center(), method = "base") ## ----------------------------------------------------------------------------- # Define new_data new_data <- rnorm(nrow(iris)) # Project the new variables into the subspace projected_vars <- project_vars(fit, new_data)