## ----load_data---------------------------------------------------------------- # load the package and data library(multibridge) data(journals) journals ## ----specify_hr--------------------------------------------------------------- # since percentages are rounded to two decimal values, we round the articles # with an error to receive integer values (step 1) x <- round(journals$articles_with_NHST * (journals$perc_articles_with_errors/100)) # total number of articles (step 2) n <- journals$articles_with_NHST # Specifying the informed Hypothesis (step 3) Hr <- c('JAP , PS , JCCP , PLOS , DP , FP , JEPG < JPSP') # Prior specification (step 4 and 5) # We assign a uniform beta distribution to each binomial propotion a <- rep(1, 8) b <- rep(1, 8) # categories of interest (step 6) journal_names <- journals$journal ## ----compute_results---------------------------------------------------------- ineq_results <- multibridge::binom_bf_informed(x=x, n=n, Hr=Hr, a=a, b=b, factor_levels=journal_names, bf_type = 'BFre', seed = 2020) m1 <- summary(ineq_results) m1 ## ----percentage_error--------------------------------------------------------- ineq_results$bf_list$error_measures ## ----compute_results2--------------------------------------------------------- ineq_results <- multibridge::binom_bf_informed(x=x, n=n, Hr=Hr, a=a, b=b, factor_levels=journal_names, bf_type = 'BFre', seed = 2020, niter = 2e4) m2 <- summary(ineq_results) ## ----percentage_error2-------------------------------------------------------- ineq_results$bf_list$error_measures ## ----show_bfe0---------------------------------------------------------------- eq_results <- multibridge::binom_bf_informed(x=x, n=n, Hr=Hr, a=a, b=b, factor_levels=journal_names, bf_type = 'BFr0', seed = 2020, niter = 2e4) m3 <- summary(eq_results) m3