## ----include=FALSE, cache=FALSE----------------------------------------------- library("knitr") knitr::opts_knit$set(self.contained = FALSE) knitr::opts_chunk$set(tidy = TRUE, collapse=TRUE, comment = "#>", tidy.opts=list(blank=FALSE, width.cutoff=55)) options(tinytex.verbose = TRUE) ## ----setup-------------------------------------------------------------------- library("multe") ## Regression of IQ at 24 months on race indicators and baseline controls r1 <- stats::lm(std_iq_24~race+factor(age_24)+female+SES_quintile, weight=W2C0, data=fl) ## Compute alternatives estimates free of contamination bias m1 <- multe(r1, "race", cluster=NULL) print(m1, digits=3) ## ----r2----------------------------------------------------------------------- r2 <- stats::lm(std_iq_24~race+factor(age_24)+female+SES_quintile+ factor(siblings)+family_structure, weight=W2C0, data=fl) m2 <- multe(r2, treatment="race") print(m2, digits=3) ## ----r3----------------------------------------------------------------------- table(fl$race[fl$siblings==6]) ## ----r4----------------------------------------------------------------------- print(m2$cb_f, digits=3) print(m2$cb_o, digits=3) ## ----r5----------------------------------------------------------------------- print(m1$est_f, digits=3) ## ----r6----------------------------------------------------------------------- ## cluster in interviewer ID m1alt <- multe(r1, "race", cluster=factor(factor(fl$interviewer_ID_24))) print(m1alt, digits=3)