Type: | Package |
Title: | Sample Size and Power for Association Studies Involving Mitochondrial DNA Haplogroups |
Version: | 0.1.1 |
Maintainer: | Aurora Baluja <mariauror@gmail.com> |
Description: | Calculate Sample Size and Power for Association Studies Involving Mitochondrial DNA Haplogroups. Based on formulae by Samuels et al. AJHG, 2006. 78(4):713-720. <doi:10.1086/502682>. |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
Suggests: | ggplot2, car |
URL: | https://github.com/aurora-mareviv/mthapower |
BugReports: | https://github.com/aurora-mareviv/mthapower/issues |
RoxygenNote: | 6.1.1 |
NeedsCompilation: | no |
Packaged: | 2019-05-14 09:00:12 UTC; aure |
Author: | Aurora Baluja |
Repository: | CRAN |
Date/Publication: | 2019-05-14 09:40:03 UTC |
Sample size calculations - mtDNA haplogroups
Description
Determine the minimum number of cases (Ncmin
), required to detect: either a change from p0
(haplogroup frequency in controls) to p1
(haplogroup frequency in cases), or a given OR, with a predefined confidence interval, in a study with Nh
haplogroups.
Note: I assume that case-control equations are valid for cohorts with a balanced number of cases and controls.
This function may not be generalizable for all studies involving mtDNA haplogroups.
Usage
mthacases(p0 = p0, Nh = Nh, OR.cas.ctrl = OR.cas.ctrl,
power = power, sig.level = sig.level)
Arguments
p0 |
the frequency of the haplogroup in the control population, (that is, the controls among exposed). It depends on haplogroup baseline frequency. |
Nh |
number of haplogroup categories. Usually 10 haplogroups plus one category for rare haplogroups: |
OR.cas.ctrl |
|
power |
the power to detect a given OR in my study (usually 80-90). |
sig.level |
the alpha error accepted. Can take 3 possible values: |
Value
Gives the result in a data frame, easy to print in a plot.
Author(s)
Author and maintainer: Aurora Baluja. Email: mariauror@gmail.com
References
1. DC Samuels, AD Carothers, R Horton, PF Chinnery. The Power to Detect Disease Associations with Mitochondrial DNA Haplogroups. AJHG, 2006. 78(4):713-720. DOI:10.1086/502682.
2. Source code: github.com/aurora-mareviv/mthapower.
3. Shiny app: aurora.shinyapps.io/mtDNA_power_calc.
Examples
mydata <- mthacases(p0=0.445, Nh=11,
OR.cas.ctrl=c(2), power=80,
sig.level=0.05) # Baudouin study
mydata <- mthacases(p0=0.445, Nh=11,
OR.cas.ctrl=c(1.25,1.5,1.75,2,2.25,2.5,2.75,3),
power=80, sig.level=0.05)
mydata <- mydata[c(2,6)]
mydata
plot(mydata)
Power calculations - mtDNA haplogroups
Description
For a given study size, determine the minimum effect size that can be detected with the desired power and significance level, in a study with Nh
haplogroups.
Note: I assume that case-control equations are valid for cohorts with a balanced number of cases and controls.
This function may not be generalizable for all studies involving mtDNA haplogroups.
Usage
mthapower(n.cases = ncases, p0 = p0, Nh = Nh,
OR.cas.ctrl = OR.cas.ctrl, sig.level = sig.level)
Arguments
n.cases |
number of cases or controls from the study. It can be either a single value, or a sequence: |
p0 |
the frequency of the haplogroup in the control population. It depends on haplogroup baseline frequency. |
Nh |
number of categories for haplogroups. Usually 10 haplogroups plus one category for rare haplogroups: |
OR.cas.ctrl |
(p1 / (1-p1)) / (p0 / (1-p0)) the OR you want to detect with your data. |
sig.level |
the alpha error accepted. Can take 3 possible values: |
Value
Calculates power given the number of cases and other parameters. The output is an object of class data.frame
, ready to plot.
Author(s)
Author and maintainer: Aurora Baluja. Email: mariauror@gmail.com
References
1. DC Samuels, AD Carothers, R Horton, PF Chinnery. The Power to Detect Disease Associations with Mitochondrial DNA Haplogroups. AJHG, 2006. 78(4):713-720. DOI:10.1086/502682.
2. Source code: github.com/aurora-mareviv/mthapower.
3. Shiny app: aurora.shinyapps.io/mtDNA_power_calc.
Examples
# Example 1:
pow <- mthapower(n.cases=203, p0=0.443, Nh=13, OR.cas.ctrl=2.33, sig.level=0.05)
# Example 2:
# Create data frames
pow.H150 <- mthapower(n.cases=seq(50,1000,by=50), p0=0.433, Nh=11,
OR.cas.ctrl=1.5, sig.level=0.05)
pow.H175 <- mthapower(n.cases=seq(50,1000,by=50), p0=0.433, Nh=11,
OR.cas.ctrl=1.75, sig.level=0.05)
pow.H200 <- mthapower(n.cases=seq(50,1000,by=50), p0=0.433, Nh=11,
OR.cas.ctrl=2, sig.level=0.05)
pow.H250 <- mthapower(n.cases=seq(50,1000,by=50), p0=0.433, Nh=11,
OR.cas.ctrl=2.5, sig.level=0.05)
# Bind the three data frames:
bindata <- rbind(pow.H150,pow.H175,pow.H200,pow.H250)
# Adds column OR to binded data frame:
bindata$OR <- rep(factor(c(1.50,1.75,2,2.5)),
times = c(nrow(pow.H150),
nrow(pow.H175),
nrow(pow.H200),
nrow(pow.H250)))
# Create plot:
# install.packages("car")
library(car)
scatterplot(power~ncases | OR, regLine=FALSE,
smooth=FALSE,
boxplots=FALSE, by.groups=TRUE,
data=bindata)