## ----------------------------------------------------------------------------- #loads package library("mstknnclust") ## ----------------------------------------------------------------------------- #loads dataset data(dslanguages) ## ---- echo=FALSE-------------------------------------------------------------- knitr::kable(dslanguages[1:6,1:6],digits=6,row.names=TRUE, caption = "Distance between first six objects to group") ## ----------------------------------------------------------------------------- #Performs MST-kNN clustering using languagesds distance matrix results <- mst.knn(dslanguages) ## ---- echo=FALSE-------------------------------------------------------------- cat("Number of clusters: ", results$k , "\n") cat("Objects by cluster: ", results$csize, "\n") cat("Named vector of cluster allocation: \n") results$cluster cat("Data matrix partition (partial): \n") knitr::kable(tail(results$partition,10), row.names = FALSE) ## ---- fig.align = "center", fig.height = 7, fig.width = 7--------------------- library("igraph") igraph::V(results$network)$label.cex <- seq(0.6,0.6,length.out=vcount(results$network)) plot(results$network, vertex.size=8, vertex.color=igraph::clusters(results$network)$membership, layout=igraph::layout.fruchterman.reingold(results$network, niter=10000), main=paste("MST-kNN \n Clustering solution \n Number of clusters=",results$cnumber,sep="" ))