## ----include=FALSE------------------------------------------------------------ knitr::opts_chunk$set( comment = "#>", collapse = TRUE, dpi = 300, fig.retina = 2, fig.width = 6, fig.height = 6, fig.align = "center", out.width = "65%" ) ## ----------------------------------------------------------------------------- library("msaenet") ## ----------------------------------------------------------------------------- dat <- msaenet.sim.gaussian( n = 150, p = 500, rho = 0.5, coef = rep(1, 10), snr = 5, p.train = 0.7, seed = 1001 ) ## ----------------------------------------------------------------------------- msaenet.fit <- msaenet( dat$x.tr, dat$y.tr, alphas = seq(0.1, 0.9, 0.1), nsteps = 10L, tune.nsteps = "ebic", seed = 1005 ) ## ----eval=FALSE--------------------------------------------------------------- # library("doParallel") # registerDoParallel(detectCores()) ## ----------------------------------------------------------------------------- msaenet.fit$best.step msaenet.nzv(msaenet.fit) msaenet.nzv.all(msaenet.fit) msaenet.fp(msaenet.fit, 1:10) msaenet.tp(msaenet.fit, 1:10) ## ----------------------------------------------------------------------------- msaenet.pred <- predict(msaenet.fit, dat$x.te) msaenet.rmse(dat$y.te, msaenet.pred) msaenet.mae(dat$y.te, msaenet.pred) ## ----------------------------------------------------------------------------- plot(msaenet.fit, label = TRUE, label.cex = 0.5) ## ----------------------------------------------------------------------------- plot(msaenet.fit, type = "criterion") ## ----------------------------------------------------------------------------- plot(msaenet.fit, type = "dotplot", label = TRUE, label.cex = 1)