## ----------------------------------------------------------------------------- library(modmarg) data(margex) g <- glm(y ~ as.factor(agegroup)*as.factor(treatment) , data = margex) summary(g) ## ----------------------------------------------------------------------------- modmarg::marg(mod = g, var_interest = "treatment", type = 'levels') ## ----------------------------------------------------------------------------- modmarg::marg(mod = g, var_interest = "treatment", type = "effects") ## ----------------------------------------------------------------------------- g <- glm(y ~ poly(age, 3, raw = T) * as.factor(treatment) , data = margex) summary(g) modmarg::marg(mod = g, var_interest = "treatment", type = "effects", at = list("age" = c(20, 40, 60))) ## ----------------------------------------------------------------------------- g <- glm(outcome ~ as.factor(treatment), data = margex, family = binomial) summary(g) ## ----------------------------------------------------------------------------- marg(mod = g, var_interest = "treatment", type = 'levels') marg(mod = g, var_interest = "treatment", type = "effects") ## ----------------------------------------------------------------------------- g <- glm(y ~ poly(distance, 2, raw = T) * as.factor(agegroup) , data = margex) summary(g) unique(margex$agegroup) marg(mod = g, var_interest = "agegroup", type = 'levels', at_var_interest = c("20-29")) ## ----------------------------------------------------------------------------- data(cvcov) g <- glm(outcome ~ treatment + distance, data = margex, family = 'gaussian') summary(g) v <- cvcov$ols$clust print(v) d <- cvcov$ols$stata_dof print(d) # Without clustering marg(mod = g, var_interest = "treatment", type = "levels") # With clustering marg(mod = g, var_interest = "treatment", type = "levels", vcov_mat = v, dof = d)