## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(missCompare) ## ----eval = FALSE------------------------------------------------------------- # install.packages("missCompare") # library(missCompare) ## ----eval = TRUE-------------------------------------------------------------- data("clindata_miss") ## ----eval = TRUE-------------------------------------------------------------- cleaned <- missCompare::clean(clindata_miss, var_removal_threshold = 0.5, ind_removal_threshold = 0.8, missingness_coding = -9) ## ----eval = TRUE-------------------------------------------------------------- metadata <- missCompare::get_data(cleaned, matrixplot_sort = T, plot_transform = T) ## ----echo = FALSE, fig.width=6, fig.height=3---------------------------------- metadata$NA_Correlation_plot ## ----echo = FALSE, fig.width=6, fig.height=3---------------------------------- metadata$min_PDM_thresholds ## ----echo = FALSE, fig.width=6, fig.height=3---------------------------------- metadata$Matrix_plot ## ----echo = FALSE, fig.width=6, fig.height=3---------------------------------- metadata$Cluster_plot ## ----eval = FALSE------------------------------------------------------------- # simulated <- missCompare::simulate(rownum = metadata$Rows, # colnum = metadata$Columns, # cormat = metadata$Corr_matrix, # meanval = 0, # sdval = 1) ## ----eval = FALSE------------------------------------------------------------- # missCompare::MCAR(simulated$Simulated_matrix, # MD_pattern = metadata$MD_Pattern, # NA_fraction = metadata$Fraction_missingness, # min_PDM = 10) ## ----eval = FALSE------------------------------------------------------------- # missCompare::MAR(simulated$Simulated_matrix, # MD_pattern = metadata$MD_Pattern, # NA_fraction = metadata$Fraction_missingness, # min_PDM = 10) # # missCompare::MNAR(simulated$Simulated_matrix, # MD_pattern = metadata$MD_Pattern, # NA_fraction = metadata$Fraction_missingness, # min_PDM = 10) ## ----eval = FALSE------------------------------------------------------------- # missCompare::MAP(simulated$Simulated_matrix, # MD_pattern = metadata$MD_Pattern, # NA_fraction = metadata$Fraction_missingness, # min_PDM = 10, # assumed_pattern = c(rep("MCAR", 10), "MNAR")) ## ----eval = FALSE------------------------------------------------------------- # missCompare::impute_simulated(rownum = metadata$Rows, # colnum = metadata$Columns, # cormat = metadata$Corr_matrix, # MD_pattern = metadata$MD_Pattern, # NA_fraction = metadata$Fraction_missingness, # min_PDM = 10, # n.iter = 50, # assumed_pattern = NA) ## ----eval = FALSE------------------------------------------------------------- # imputed <- missCompare::impute_data(clindata_miss, # scale = F, # n.iter = 10, # sel_method = c(14)) # 14 is the code for missForest ## ----eval = TRUE, message = FALSE--------------------------------------------- imputed <- missCompare::impute_data(cleaned, scale = T, n.iter = 10, sel_method = c(3)) # 3 is the code for mean imputation ## ----eval = TRUE, warning = FALSE--------------------------------------------- diag <- missCompare::post_imp_diag(cleaned, imputed$mean_imputation[[1]], scale=T, n.boot = 5) ## ----echo = FALSE, fig.width=6, fig.height=3---------------------------------- diag$Histograms$SBP ## ----eval = TRUE, echo = FALSE, message=FALSE, warning = FALSE, results='hide'---- imputed <- missCompare::impute_data(cleaned, scale = T, n.iter = 1, sel_method = c(13)) # 13 is the code for Amelia II diag <- missCompare::post_imp_diag(cleaned, imputed$ameliaII_imputation[[1]], scale=T, n.boot = 5) ## ----echo = FALSE, fig.width=6, fig.height=3---------------------------------- head(diag$Statistics, 2) ## ----echo = FALSE, fig.width=6, fig.height=3---------------------------------- diag$Correlation_plot