Type: | Package |
Title: | Power Analysis for Meta-Analysis |
Version: | 0.2.2 |
Description: | A simple and effective tool for computing and visualizing statistical power for meta-analysis, including power analysis of main effects (Jackson & Turner, 2017)<doi:10.1002/jrsm.1240>, test of homogeneity (Pigott, 2012)<doi:10.1007/978-1-4614-2278-5>, subgroup analysis, and categorical moderator analysis (Hedges & Pigott, 2004)<doi:10.1037/1082-989X.9.4.426>. |
Depends: | R (≥ 3.6) |
License: | GPL-2 |
Encoding: | UTF-8 |
LazyData: | true |
Imports: | cowplot (≥ 1.0.0), dplyr (≥ 0.8.5), ggplot2 (≥ 3.3.0), knitr (≥ 1.28), magrittr (≥ 1.5), tidyr (≥ 1.0.2), testthat (≥ 2.3.2), rlang (≥ 0.4.5) |
Suggests: | rmarkdown (≥ 2.1) |
VignetteBuilder: | knitr |
RoxygenNote: | 7.1.1 |
NeedsCompilation: | no |
Packaged: | 2021-02-08 12:58:31 UTC; jxg569 |
Author: | Jason Griffin [aut, cre] |
Maintainer: | Jason Griffin <jasongriffin138@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2021-02-08 13:20:02 UTC |
Compute Power for Test of Homogeneity in Meta-analysis
Description
Compute statistical power for the Test of Homogeneity for meta-analysis under both fixed- and random-effects models.
Usage
homogen_power(
effect_size,
study_size,
k,
i2,
es_type,
p = 0.05,
con_table = NULL
)
Arguments
effect_size |
Numerical value of effect size. | ||||||||||
study_size |
Numerical value for number number of participants (per study). | ||||||||||
k |
Numerical value for total number of studies. | ||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). | ||||||||||
es_type |
'Character reflecting effect size metric: 'r', 'd', or 'or'. | ||||||||||
p |
Numerical value for significance level (Type I error probability). | ||||||||||
con_table |
(Optional) Numerical values for 2x2 contingency table as a vector in the following format: c(a,b,c,d).
|
Value
Estimated Power to detect differences in homogeneity of effect sizes for fixed- and random-effects models
References
Borenstein, M., Hedges, L. V., Higgins, J. P. T. and Rothstein, H. R.(2009). Introduction to meta-analysis, Chichester, UK: Wiley.
Hedges, L., Pigott, T. (2004). The Power of Statistical Tests for Moderators in Meta-Analysis, Psychological Methods, 9(4), 426-445. doi: https://dx.doi.org/10.1037/1082-989x.9.4.426
Pigott, T. (2012). Advances in Meta-Analysis. doi: https://dx.doi.org/10.1007/978-1-4614-2278-5
See Also
https://jason-griffin.shinyapps.io/shiny_metapower/
Examples
homogen_power(effect_size = .5, study_size = 10, k = 10, i2 = .50, es_type = "d")
Compute Power for Categorical Moderator Analysis in Meta-analysis
Description
Computes statistical power for categorical moderator analysis under fixed and random effects models.
Usage
mod_power(
n_groups,
effect_sizes,
study_size,
k,
i2,
es_type,
p = 0.05,
con_table = NULL
)
Arguments
n_groups |
Numerical value for the levels of a categorical variable. | ||||||||||
effect_sizes |
Numerical values for effect sizes of for each group. | ||||||||||
study_size |
Numerical value for number of participants (per study). | ||||||||||
k |
Numerical value for total number of studies. | ||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). | ||||||||||
es_type |
Character reflecting effect size metric: 'r', 'd', or 'or'. | ||||||||||
p |
Numerical value for significance level (Type I error probability). | ||||||||||
con_table |
(Optional) List of numerical values for 2x2 contingency tables as a vector in the following format: c(a,b,c,d). These should be specified for each group(i.e., n_groups).
|
Value
Estimated Power estimates for moderator analysis under fixed- and random-effects models
See Also
https://jason-griffin.shinyapps.io/shiny_metapower/
Examples
mod_power(n_groups = 2,
effect_sizes = c(.1,.5),
study_size = 20,
k = 10,
i2 = .50,
es_type = "d")
mod_power(n_groups = 2,
con_table = list(g1 = c(6,5,4,5), g2 = c(8,5,2,5)),
study_size = 40,
k = 20,
i2 = .50,
es_type = "or")
Compute Power for Meta-analysis
Description
Computes statistical power for summary effect sizes in meta-analysis.
Usage
mpower(
effect_size,
study_size,
k,
i2,
es_type,
test_type = "two-tailed",
p = 0.05,
con_table = NULL
)
Arguments
effect_size |
Numerical value of effect size. | ||||||||||
study_size |
Numerical value for number number of participants (per study). | ||||||||||
k |
Numerical value for total number of studies. | ||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). | ||||||||||
es_type |
Character reflecting effect size metric: 'r', 'd', or 'or'. | ||||||||||
test_type |
Character value reflecting test type: ("two-tailed" or "one-tailed"). | ||||||||||
p |
Numerical value for significance level (Type I error probability). | ||||||||||
con_table |
(Optional) Numerical values for 2x2 contingency table as a vector in the following format: c(a,b,c,d).
|
Value
Estimated Power
References
Borenstein, M., Hedges, L. V., Higgins, J. P. T. and Rothstein, H. R.(2009). Introduction to meta-analysis, Chichester, UK: Wiley.
Hedges, L., Pigott, T. (2004). The Power of Statistical Tests for Moderators in Meta-Analysis, Psychological Methods, 9(4), 426-445 doi: https://dx.doi.org/10.1037/1082-989x.9.4.426
Pigott, T. (2012). Advances in Meta-Analysis. doi: https://dx.doi.org/10.1007/978-1-4614-2278-5
Jackson, D., Turner, R. (2017). Power analysis for random-effects meta-analysis, Research Synthesis Methods, 8(3), 290-302 doi: https://dx.doi.org/10.1002/jrsm.1240
See Also
https://jason-griffin.shinyapps.io/shiny_metapower/
Examples
mpower(effect_size = .2, study_size = 10, k = 10, i2 = .5, es_type = "d")
Plot Power Curve for Test of Homogeneity
Description
Plots power curves for the test of homogeneity for different levels of within-study variation for fixed effects models. For random-effects models, power curves are plotted for various levels of heterogeneity.
Usage
plot_homogen_power(obj)
Arguments
obj |
should be an "homogen_power" object |
Value
Power curve plot for the user specified input parameters
Plot Power Curve for Categorical Moderators
Description
Plots power curves for categorical moderator in meta-analysis
Usage
plot_mod_power(obj)
Arguments
obj |
This should be an 'mod_power' object |
Value
Power curves for moderator analysis under fixed and random effects models
Plot Power Curve for Meta-analysis
Description
Plots power curves for fixed effects models with various effect size magnitudes. Also plots power curves for various levels of heterogeneity (e.g., i2 = 75
Usage
plot_mpower(obj)
Arguments
obj |
This should be an "mpower" object |
Value
Power curve plot for the user specified input parameters
Plot Power Curve for Subgroup analysis
Description
Plots power curves to detect subgroup differences in meta-analysis.
Usage
plot_subgroup_power(obj)
Arguments
obj |
This should be an 'subgroup_power' object |
Value
Power curves to detect subgroup differences for fixed and random effects models
Compute Power for Subgroup Analysis in Meta-analysis
Description
Computes statistical power for different subgroups under fixed and random effects models.
Usage
subgroup_power(
n_groups,
effect_sizes,
study_size,
k,
i2 = 0.5,
es_type,
p = 0.05,
con_table = NULL
)
Arguments
n_groups |
Numerical value for the number of subgroups. | ||||||||||
effect_sizes |
Numerical values for effect sizes of for each group. | ||||||||||
study_size |
Numerical value for number of participants (per study). | ||||||||||
k |
Numerical value for total number of studies. | ||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). | ||||||||||
es_type |
Character reflecting effect size metric: 'r', 'd', or 'or'. | ||||||||||
p |
Numerical value for significance level (Type I error probability). | ||||||||||
con_table |
(Optional) List of numerical values for 2x2 contingency tables as a vector in the following format: c(a,b,c,d). These should be specified for each subgroup (i.e., n_groups).
|
Value
Estimated Power estimates for subgroup differences under fixed- and random-effects models
See Also
https://jason-griffin.shinyapps.io/shiny_metapower/
Examples
subgroup_power(n_groups = 2,
effect_sizes = c(.1,.5),
study_size = 20,
k = 10,
i2 = .5,
es_type = "d")
subgroup_power(n_groups = 2,
con_table = list(g1 = c(6,5,4,5), g2 = c(8,5,2,5)),
study_size = 40,
k = 20,
i2 = .5,
es_type = "or")