## ----setup, echo = FALSE------------------------------------------------------ knitr::opts_knit$set(global.par = TRUE) knitr::opts_chunk$set(fig.width = 7, fig.height = 4) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # y1 + y2 | sd1 + sd2 ~ x1 + x2 + x3 + ns(n) | z1 + z2 + z3 | treat + trial (+ groups) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # f <- "y1 + y2 | sd1 + sd2 ~ x1 + x2 + x3 + ns(n) | z1 + z2 + z3 | treat + trial + groups" # out <- bmeta_analyze(formula(f), data = df, # mcmc = list(ndiscard = 20000, nskip = 5, nkeep = 10000), # prior = list(model = "NoRecovery")) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # Rho_init <- diag(3) # assume 3 by 3 # Rho_init[upper.tri(Rho_init)] <- # Rho_init[lower.tri(Rho_init)] <- 0.2 # out <- bmeta_analyze(formula(f), data = df, # prior = list(model = "EquiCorr"), # abbreviation allowed # control = list(sample_Rho = FALSE), # init = list(Rho = Rho_init)) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # f <- "y | sd ~ x1 + x2 + x3 + ns(n) | z1 + z2 + z3 | treat + trial" # out <- bmeta_analyze(formula(f), data = df, # mcmc = list(discard = 20000, nskip = 5, nkeep = 10000), # prior = list(df = 3)) # heavy-tailed random effects ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # Rho_init <- diag(nT) # nT = the number of treatments # Rho_init[upper.tri(Rho_init)] <- # Rho_init[lower.tri(Rho_init)] <- 0.2 # out <- bmeta_analyze(formula(f), data = df, # control = list(sample_df = TRUE, sample_Rho = FALSE), # init = list(Rho = Rho_init)) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # f <- "y | sd ~ x1 + x2 + x3 + ns(n) | treat + trial"