Title: | Extract and Summarise Data from Published Figures |
Version: | 1.0.1 |
Description: | High-throughput, flexible and reproducible extraction of data from figures in primary research papers. metaDigitise() can extract data and / or automatically calculate summary statistics for users from box plots, bar plots (e.g., mean and errors), scatter plots and histograms. |
Depends: | R (≥ 3.4) |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 6.1.1 |
Imports: | magick, stats, graphics, utils, purrr |
Suggests: | mockery, testthat, knitr, rmarkdown |
BugReports: | https://github.com/daniel1noble/metaDigitise/issues |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2020-03-12 23:07:30 UTC; danielnoble |
Author: | Joel Pick [aut], Shinichi Nakagawa [aut], Daniel Noble [aut, cre] |
Maintainer: | Daniel Noble <daniel.wa.noble@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2020-03-13 06:10:02 UTC |
CI95_to_sd
Description
Transforms symmetrical confidence interval to standard deviation
Usage
CI95_to_sd(CI, n)
Arguments
CI |
Interval difference from the mean |
n |
Sample Size |
Value
Returns vector of standard deviations
Author(s)
Joel Pick
Examples
CI95_to_sd(CI = 2, n = 10)
MB_extract
Description
Extraction of data from boxplots of mean_error plots, from multiple groups
Usage
MB_extract(edit = FALSE, plot_type, entered_N,
raw_data = data.frame(stringsAsFactors = TRUE), cex, ...)
Arguments
edit |
logical; whether in edit mode |
plot_type |
The type of plot |
entered_N |
ask for sample sizes? |
raw_data |
raw data |
cex |
point size |
... |
further arguments to MB_extract |
ask_variable
Description
asks user what variable(s) is depending on plot type
Usage
ask_variable(plot_type)
Arguments
plot_type |
plot_type |
bulk_edit
Description
Function for bulk editing previous data extraction through 'metaDigitise'
Usage
bulk_edit(dir, summary = TRUE, cex)
Arguments
dir |
parent directory |
summary |
logical; whether summary is returned |
cex |
relative size of text and points in replotting |
Author(s)
Joel Pick
cal_coords
Description
Prompts user to enter axis coordinates, and their values. Modified from the digitize package
Usage
cal_coords(plot_type, cex, ...)
Arguments
plot_type |
plot type |
cex |
size of points |
... |
further arguments passed to or from other methods. |
calibrate
Description
Converts x and y coordinates from original plot coords to actual coords using previous identified coordinates. Modified from digitise package
Usage
calibrate(raw_data, calpoints, point_vals, log_axes, ...)
Arguments
raw_data |
The raw data |
calpoints |
The calibration points |
point_vals |
The point values |
log_axes |
whether x or y is logged |
... |
further arguments passed to or from other methods |
cat_matrix
Description
prints a vector as a number list of items with a certain number of columns
Usage
cat_matrix(x, cols)
Arguments
x |
vector |
cols |
number of columns |
convert_group_data
Description
Converts, pre-calibrated points clicked into a meaningful dataframe
Usage
convert_group_data(cal_data, plot_type)
Arguments
cal_data |
Calibrated data |
plot_type |
The type of plot |
convert_histogram_data
Description
Conversion of extracted data from histogram
Usage
convert_histogram_data(cal_data)
Arguments
cal_data |
The calibration data |
delete_points
Description
Delete groups from scatterplots
Usage
delete_group(raw_data)
Arguments
raw_data |
data |
dir_details
Description
Function will gather important directory details about calibration files and figures needed for processing
Usage
dir_details(dir)
Arguments
dir |
the path name to the directory / folder where the files are located |
Author(s)
Daniel Noble - daniel.wa.noble@gmail.com
Examples
# temporary directory
tmp_dir <- tempdir()
setup_calibration_dir(paste0(tmp_dir, "/"))
# Simulate data
set.seed(103)
x <- rnorm(20,0,1)
y <- rnorm(20,0,1)
means <- c(mean(x),mean(y))
ses <- c(sd(x)/sqrt(length(x))*1.96, sd(y)/sqrt(length(y))*1.96)
#Generate mock figures
png(filename = paste0(tmp_dir,"/mean_error.png"), width = 480, height = 480)
plot(means, ylim = c(min(means-ses)-0.1,max(means+ses)+0.1), xlim=c(0.5,2.5),
xaxt="n", pch=19, cex=2, ylab="Variable +/- SE", xlab="Treatment", main="Mean Error")
arrows(1:length(means),means+ses, 1:length(means), means-ses, code=3, angle=90, length=0.1)
axis(1,1:length(means),names(means))
dev.off()
png(filename = paste0(tmp_dir, "/boxplot.png"), width = 480, height = 480)
boxplot(x,y, main="Boxplot")
dev.off()
png(filename = paste0(tmp_dir, "/histogram.png"),width = 480, height = 480)
hist(c(x,y), xlab= "variable", main="Histogram")
dev.off()
png(filename = paste0(tmp_dir, "/scatterplot.png"), width = 480, height = 480)
plot(x,y, main="Scatterplot")
dev.off()
#Obtain details on directory structure that are used for metaDigitise
data <- dir_details(tmp_dir)
edit_group
Description
Edit group points in scatterplots
Usage
edit_group(raw_data, group_id, calpoints, cex, ...)
Arguments
raw_data |
data |
group_id |
group_id |
calpoints |
The calibration points |
cex |
point size |
... |
other functions to pass to internal_redraw |
edit_metaDigitise
Description
Function for editing previous data extraction through 'metaDigitise'
Usage
edit_metaDigitise(object)
Arguments
object |
an R object of class ‘metaDigitise’ |
Value
Data.frame
Author(s)
Joel Pick
enter_N
Description
Enter sample sizes for a group
Usage
enter_N(raw_data, ...)
Arguments
raw_data |
raw_data |
... |
Pass additional arguments |
Author(s)
Joel Pick
error_to_sd
Description
Transforms error to standard deviation
Usage
error_to_sd(error, n, error_type = c("se", "CI95", "sd", NA))
Arguments
error |
some form of error |
n |
Sample Size |
error_type |
type of error measured |
Value
Returns vector of standard errors
Author(s)
Joel Pick
extract_digitised
Description
Function for extracting the data from a metaDigitise list and creating either summary data or a list of the raw data.
Usage
extract_digitised(list, summary = TRUE)
Arguments
list |
A list of objects returned from metaDigitise |
summary |
A logical 'TRUE' or 'FALSE' indicating whether metaDigitise should print summary statistics from each figure and group. |
Value
The function will return a data frame with the data across all the digitised files
filename
Description
extracts filename from filepath
Usage
filename(x)
Arguments
x |
filepath |
getExtracted
Description
Extracts data from a directory that has been previously digitised using metaDigitise()
Usage
getExtracted(dir, summary = TRUE)
Arguments
dir |
The directory where figures have already been digitised. There |
summary |
Logical indicating whether summarised (default) or calibrated data should be returned. |
Value
Returns a data frame (summary = TRUE) or a list with slots for each plot type (summary = FALSE)
Examples
# Make some mock metaDigitise object
mock_metaDig <- list(
image_file = "./image.png",
flip=FALSE,
rotate=0,
plot_type="mean_error",
variable="y",
calpoints = data.frame(x=c(0,0),y=c(0,100)),
point_vals = c(1,2),
entered_N=TRUE,
raw_data = data.frame(id=rep("control",2),
x=c(60,60),
y=c(75,50),
n=rep(20,2)),
knownN = NULL,
error_type="sd",
processed_data=data.frame(
id=as.factor("control"),
mean=1.5,
error=0.25,
n=20,
variable="y",
stringsAsFactors = FALSE)
)
class(mock_metaDig) <- 'metaDigitise'
# write image file to tmpdir()
dir <- tempdir()
# Setup directory as it would be if digitised images existed
setup_calibration_dir(dir)
# Save the digitised data
saveRDS(mock_metaDig, file = paste0(dir, "/caldat/", "image"))
#metaDigitise figures
data <- getExtracted(dir)
getVals
Description
Gets values needed to calibrate axis coordinated. Modified from the digitize package
Usage
getVals(calpoints, ...)
Arguments
calpoints |
Calibration points |
... |
further arguments passed to or from other methods. |
get_notDone_file_details
Description
Function will get file information from the directory and the calibration files. It will also exclude files that have already been processed, as is judged by the match between file names in the calibration folder and the imported details object
Usage
get_notDone_file_details(dir)
Arguments
dir |
Path name to the directory / folder where the figure files are located. |
Value
Returns a list containing details on the images names and their paths, the calibration file names (or files already completed) as well as the paths to these files.
Author(s)
Daniel Noble - daniel.wa.noble@gmail.com
Examples
# temporary directory
tmp_dir <- tempdir()
# Simulate data
set.seed(103)
x <- rnorm(20,0,1)
y <- rnorm(20,0,1)
means <- c(mean(x),mean(y))
ses <- c(sd(x)/sqrt(length(x))*1.96, sd(y)/sqrt(length(y))*1.96)
#Generate mock figures
png(filename = paste0(tmp_dir,"/mean_error.png"), width = 480, height = 480)
plot(means, ylim = c(min(means-ses)-0.1,max(means+ses)+0.1), xlim=c(0.5,2.5),
xaxt="n", pch=19, cex=2, ylab="Variable +/- SE", xlab="Treatment", main="Mean Error")
arrows(1:length(means),means+ses, 1:length(means), means-ses, code=3, angle=90, length=0.1)
axis(1,1:length(means),names(means))
dev.off()
png(filename = paste0(tmp_dir, "/boxplot.png"), width = 480, height = 480)
boxplot(x,y, main="Boxplot")
dev.off()
png(filename = paste0(tmp_dir, "/histogram.png"),width = 480, height = 480)
hist(c(x,y), xlab= "variable", main="Histogram")
dev.off()
png(filename = paste0(tmp_dir, "/scatterplot.png"), width = 480, height = 480)
plot(x,y, main="Scatterplot")
dev.off()
#Obtain file names that are incomplete within the tmp directory
data <- get_notDone_file_details(tmp_dir)
grandMean
Description
Pooled mean of a set of group means
Usage
grandMean(mean, n)
Arguments
mean |
Mean |
n |
Sample size |
Value
Returns vector of pooled mean
Author(s)
Joel Pick
Examples
grandMean(mean = 10, n = 30)
grandSD
Description
Pooled standard deviation of a set of groups
Usage
grandSD(mean, sd, n, equal = FALSE)
Arguments
mean |
Mean |
sd |
standard deviation |
n |
Sample size |
equal |
Logical: Whether to calculate pooled SD assuming groups have the same means (TRUE) or different means (FALSE) |
Value
Returns vector of pooled mean
Author(s)
Joel Pick
Examples
grandSD(mean = 10, sd = 3, n = 40)
group_scatter_extract
Description
Extraction of data from scatterplots
Usage
group_scatter_extract(edit = FALSE,
raw_data = data.frame(stringsAsFactors = TRUE), cex, ...)
Arguments
edit |
logical; whether in edit mode |
raw_data |
raw data |
cex |
point size |
... |
arguments passed to internal_redraw |
histogram_extract
Description
Extraction of data from histograms
Usage
histogram_extract(edit = FALSE, raw_data = data.frame(), calpoints,
cex, ...)
Arguments
edit |
logical; whether in edit mode |
raw_data |
raw data |
calpoints |
The calibration points |
cex |
point size |
... |
arguments to pass to internal_redraw |
import_menu
Description
Imports metaDigitise() calibration files from a directory that is partially or fully digitised already
Usage
import_menu(dir, summary)
Arguments
dir |
The directory where figures have already been digitised |
summary |
Logical indicating whether the imported data should be returned in summarised or processed form. |
Value
Returns a list (summary = FALSE) or data frame (summary = TRUE)
import_metaDigitise
Description
Imports metaDigitise() calibration files from a directory that is partially or fully digitised already
Usage
import_metaDigitise(dir, summary)
Arguments
dir |
The directory where figures have already been digitised |
summary |
Logical indicating whether the imported data should be returned in summarised form ('TRUE') or not ('FALSE') |
Value
Returns a list (summary = FALSE) or data frame (summary = TRUE)
Author(s)
Daniel Noble - daniel.wa.noble@gmail.com
internal_digitise
Description
Extracts points from a single figure and processes data
Usage
internal_digitise(image_file, plot_type = NULL, cex)
Arguments
image_file |
Image file |
plot_type |
Type of plot from "mean_error","boxplot","scatterplot" or"histogram". Function will prompt if not entered by user. |
cex |
point size for replotting |
Value
List of user inputs and transformed data from digitisation
Author(s)
Joel Pick
internal_redraw
Description
Redraws figure and extraction data
Usage
internal_redraw(image_file, flip = FALSE, rotate = 0,
plot_type = NULL, variable = NULL, cex = NULL, calpoints = NULL,
point_vals = NULL, raw_data = NULL, rotation = TRUE,
calibration = TRUE, points = TRUE, ...)
Arguments
image_file |
Image filename |
flip |
whether to flip figure |
rotate |
how much to rotate figure |
plot_type |
plot_type |
variable |
variable |
cex |
relative size of points and text |
calpoints |
The calibration points |
point_vals |
The point values |
raw_data |
The raw data |
rotation |
logical, should figure be rotated |
calibration |
logical, should calibration be redrawn |
points |
logical, should points be redrawn |
... |
further arguments passed to or from other methods. |
is.even
Description
Checks whether a integer is even
Usage
is.even(x)
Arguments
x |
integer value |
Value
Logical (TRUE or FALSE) indicating whether value is an even number or not
is.wholenumber
Description
Checks whether value is a whole number
Usage
is.wholenumber(x, tol = .Machine$double.eps^0.5)
Arguments
x |
object to be tested |
tol |
tolerance |
Value
Logical value (TRUE or FALSE)
isNumeric
Description
Checks whether a character is a number
Usage
isNumeric(x)
Arguments
x |
character to be tested |
Value
Logical (TRUE or FALSE) indicating whether value is numeric or not
knownN
Description
prints a vector as a number list of items with a certain number of columns
Usage
knownN(plot_type, processed_data, knownN = NULL, ...)
Arguments
plot_type |
plot type |
processed_data |
raw_data |
knownN |
previously entered N |
... |
arguments from other calls |
load_metaDigitise
Description
Loads metaDigitise calibration / data files from a directory containing a set of figures that are partially or fully digitised already.
Usage
load_metaDigitise(doneCalFiles, names)
Arguments
doneCalFiles |
The metaDigitise objects that have already been completed in the directory |
names |
The names of the finished metaDigitise objects |
Value
Returns a list of metaDigitised objects that have already been completed
Author(s)
Daniel Noble - daniel.wa.noble@gmail.com
locator_mD
Description
Wrapper function for locator, with more control over point size etc
Usage
locator_mD(nPoints = 1, line = TRUE, cex = 1, col = "red", ...)
Arguments
nPoints |
number of points in a sequence |
line |
logical; plot lines between points |
cex |
size of points |
col |
colour of points |
... |
further arguments passed to or from other methods. |
Value
Plots clicked points, and returns their x.y coordinates as a data.frame
getVals
Description
Ask user for information about whether axes are on log scale
Usage
logAxes(...)
Arguments
... |
further arguments passed to or from other methods. |
metaDigitise
Description
Single or batch processing of figures with .png, .jpg, .tiff, .pdf extensions within a set directory. metaDigitise() consolidates the data and exports the data for each image and image type. It can also summarise the data, provide the raw data (if scatterplots) and automatically imports previously finished data and merges it with newly digitised data. metaDigitise() also allows users to check their calibration along with editing previous digitisations.
Usage
metaDigitise(dir, summary = TRUE, cex = 1)
Arguments
dir |
the path name to the directory / folder where the files are located |
summary |
whether the digitised data should be returned as a summary (TRUE) or as a concatenated list of similar types. |
cex |
relative size of points and text in replotting of digitisation. Default is 1. |
Details
metaDigitise() can be used on a directory with a whole host of different figure types (mean and error, scatter plots, box plots and histograms) and file types (.jpeg, .png, .tiff, .pdf). There are three major options provided to users:
If the "1: Process new images" option is chosen, it will automatically cycle through all figures not already completed within a directory in order, prompting the user for specific information as they go. At the end of each figure users will be asked if they would like to continue or not, providing flexibility to leave a job should should they need to. As figures are digitised it will automatically write metaDigitise() object files (in .RDS format containing processed and calibration data along with directory and file details), into a special caldat/ folder within the directory. Importantly, as new files are added to a directory that has already been "completed", metaDigitise() will recognize these unfinished files and only cycle through the digitisation of these new files. This easily allows users to pick up from where they left off. It will also automatically re-merge completed figure with any newly digitised figures at the end of this process keeping everything together throughout the process.
If the "2: Import existing data" is chosen, all existing files that have already been digitised will be automatically imported from the given directory.
Finally, metDigitise is built for ease of editing and reproducibility in mind. Hence, if "3: Edit existing data" is chosen by the user then users will have the options to "1: Cycle through images" (that are complete), overlaying digitisations with each figure and asking whether they would like to edit each figure or "2: Choose specific file to edit" allowing editing for a specific file. Here a list of all files are provided and the user simply needs to pick the one in the console they would like to view. Alternatively, the "3: Enter previously omitted sample sizes" option allows the user to go back and enter sample sizes that they may not have had on hand at the time of digitisation. This means that, so long as the caldat/ folder along with respective images are maintained, anyone using metaDigitise() can simply import existing digitisations, modify them and fix them. This folder can then be shared with colleagues to allow them to reproduce any data extraction.
Value
A data frame or list containing the raw digitised data or the processed, summary statistics from the digitised data
Author(s)
Joel Pick - joel.l.pick@gmail.com
Daniel Noble - daniel.wa.noble@gmail.com
Examples
# temporary directory
tmp_dir <- tempdir()
# Simulate data
set.seed(103)
x <- rnorm(20,0,1)
y <- rnorm(20,0,1)
means <- c(mean(x),mean(y))
ses <- c(sd(x)/sqrt(length(x))*1.96, sd(y)/sqrt(length(y))*1.96)
#Generate mock figures
png(filename = paste0(tmp_dir,"/mean_error.png"), width = 480, height = 480)
plot(means, ylim = c(min(means-ses)-0.1,max(means+ses)+0.1), xlim=c(0.5,2.5),
xaxt="n", pch=19, cex=2, ylab="Variable +/- SE", xlab="Treatment", main="Mean Error")
arrows(1:length(means),means+ses, 1:length(means), means-ses, code=3, angle=90, length=0.1)
axis(1,1:length(means),names(means))
dev.off()
png(filename = paste0(tmp_dir, "/boxplot.png"), width = 480, height = 480)
boxplot(x,y, main="Boxplot")
dev.off()
png(filename = paste0(tmp_dir, "/histogram.png"),width = 480, height = 480)
hist(c(x,y), xlab= "variable", main="Histogram")
dev.off()
png(filename = paste0(tmp_dir, "/scatterplot.png"), width = 480, height = 480)
plot(x,y, main="Scatterplot")
dev.off()
#metaDigitise figures
## Not run:
data <- metaDigitise(tmp_dir)
## End(Not run)
order_lists
Description
Will re-order the processed data such that similar types of data are organised into a single list defined by their plot type.
Usage
order_lists(list, plot_types)
Arguments
list |
The list of metaDigitise objects that have already been finished within the caldat/ folder |
plot_types |
The list of plot types extracted from metaDigitised objects |
Value
Returns a list ordered by the plot type
Author(s)
Daniel Noble - daniel.wa.noble@gmail.com
plot.metaDigitise
Description
Re-plots figure and extraction data
Usage
## S3 method for class 'metaDigitise'
plot(x, cex = NULL, ...)
Arguments
x |
an R object of class ‘metaDigitise’ |
cex |
size of points |
... |
further arguments passed to or from other methods. |
Author(s)
Joel Pick
point_extraction
Description
Extracts or edits point of a digitisation
Usage
point_extraction(object, edit = FALSE)
Arguments
object |
Object |
edit |
Logical (TRUE or FALSE) indicating whether a point would like to be edited |
print.metaDigitise
Description
Print method for class ‘metaDigitise’
Usage
## S3 method for class 'metaDigitise'
print(x, ...)
Arguments
x |
an R object of class ‘metaDigitise’ |
... |
further arguments passed to or from other methods. |
Author(s)
Joel Pick
print_cal_instructions
Description
Prints instructions for calibration. Modified from the digitize package
Usage
print_cal_instructions(plot_type, ...)
Arguments
plot_type |
plot type |
... |
further arguments passed to or from other methods. |
process_data
Description
Processes points clicked into a meaningful dataframe
Usage
process_data(object)
Arguments
object |
object from metaDigitise |
process_new_files
Description
Batch processes image files within a set directory, consolidates the data and exports the data for each image and type
Usage
process_new_files(dir, summary = TRUE, cex)
Arguments
dir |
the path name to the directory / folder where the files are located |
summary |
summary = TRUE or FALSE is most relevant as it will print a simple summary statistics that are the same across all files |
cex |
relative size of points and text in replotting of digitisation. |
Author(s)
Joel Pick - joel.l.pick@gmail.com
Daniel Noble - daniel.wa.noble@gmail.com
Examples
# temporary directory
tmp_dir <- tempdir()
# Simulate data
set.seed(103)
x <- rnorm(20,0,1)
y <- rnorm(20,0,1)
means <- c(mean(x),mean(y))
ses <- c(sd(x)/sqrt(length(x))*1.96, sd(y)/sqrt(length(y))*1.96)
#Generate mock mean error plot
png(filename = paste0(tmp_dir,"/mean_error.png"), width = 480, height = 480)
plot(means, ylim = c(min(means-ses)-0.1,max(means+ses)+0.1), xlim=c(0.5,2.5),
xaxt="n", pch=19, cex=2, ylab="Variable +/- SE", xlab="Treatment", main="Mean Error")
arrows(1:length(means),means+ses, 1:length(means), means-ses, code=3, angle=90, length=0.1)
axis(1,1:length(means),names(means))
dev.off()
## Not run:
#metaDigitise figures
data <- process_new_files(paste0(tmp_dir, "/"), summary = TRUE, cex = 2)
## End(Not run)
range_to_sd
Description
Converts a range to a standard deviation
Usage
range_to_sd(min, max, n)
Arguments
min |
Minimum value |
max |
Maximum value |
n |
Sample size |
Value
Returns vector of standard deviation
Author(s)
Joel Pick
Examples
range_to_sd(min = 3, max = 8, n = 40)
redraw_calibration
Description
plots calibration data on graph
Usage
redraw_calibration(plot_type, variable, calpoints, point_vals,
image_details, cex)
Arguments
plot_type |
plot_type |
variable |
variable |
calpoints |
The calibration points |
point_vals |
The point values |
image_details |
image_details |
cex |
relative size of points and text |
redraw_points
Description
plots clicked data on graph
Usage
redraw_points(plot_type, raw_data, image_details, cex)
Arguments
plot_type |
plot_type |
raw_data |
The raw data |
image_details |
image_details |
cex |
relative size of points and text |
rotate_graph
Description
Rotates/flips imported figures
Usage
redraw_rotation(image, flip, rotate)
Arguments
image |
Image object from magick::image_read |
flip |
whether to flip figure |
rotate |
how much to rotate figure |
rqm_to_mean
Description
Calculate the mean from the box plots
Usage
rqm_to_mean(min, LQ, median, UQ, max, n)
Arguments
min |
Minimum value |
LQ |
Lower 75th quartile |
median |
Median |
UQ |
Upper 75th quartile |
max |
Maximum value |
n |
Sample size |
Value
Returns vector of mean
Author(s)
Joel Pick
Examples
rqm_to_mean(min = 2, LQ = 3, median = 5, UQ = 6, max = 9, n = 30)
rqm_to_sd
Description
Calculate the standard deviation from box plots
Usage
rqm_to_sd(min, LQ, UQ, max, n)
Arguments
min |
Minimum value |
LQ |
Lower 75th quartile |
UQ |
Upper 75th quartile |
max |
Maximum value |
n |
Sample size |
Value
Returns vector of standard deviation
Author(s)
Joel Pick
Examples
rqm_to_sd(min = 2, LQ = 3, UQ = 6, max = 9, n = 30)
se_to_sd
Description
Transforms standard error to standard deviation
Usage
se_to_sd(se, n)
Arguments
se |
Standard Error of the mean |
n |
Sample Size |
Value
Returns vector of standard errors
Author(s)
Joel Pick
Examples
se_to_sd(se = 5, n = 10)
setup_calibration_dir
Description
Function will check whether the calibration directory has been setup and if not, create one.
Usage
setup_calibration_dir(dir)
Arguments
dir |
Path name to the directory / folder where the files are located. |
Value
Returns a caldat/ folder within the directory where all metaDigitise objects are stored.
Author(s)
Daniel Noble - daniel.wa.noble@gmail.com
Examples
# temporary directory
tmp_dir <- tempdir()
#Create the calibration folder in the directory specified that is used to store files.
setup_calibration_dir(paste0(tmp_dir, "/"))
single_MB_extract
Description
Takes points user defined points from a single group mean_error plot or boxplot, in a set order, and returns them.
Usage
single_MB_extract(plot_type, cex)
Arguments
plot_type |
Type of plot |
cex |
point size |
specify_type
Description
Function that allows user to interface with function to specific each type of plot prior to digitising
Usage
specify_type()
Value
The function will return the type of plot specified by the user and feed this argument back into metDigitise
Author(s)
Daniel Noble - daniel.wa.noble@gmail.com
Joel Pick - joel.l.pick@gmail.com
summary.metaDigitise
Description
Summary method for class ‘metaDigitise’
Usage
## S3 method for class 'metaDigitise'
summary(object, ...)
Arguments
object |
an R object of class ‘metaDigitise’ |
... |
further arguments passed to or from other methods. |
Value
Data.frame
Author(s)
Joel Pick
user_base
Description
asks user for base of logarithm, accept numeric or "e"
Usage
user_base(...)
Arguments
... |
arguments passed to other functions |
user_calibrate
Description
Gets values needed to calibrate axis coordinated. Modified from the digitize package
Usage
user_calibrate(object)
Arguments
object |
metaDigitise object |
user_count
Description
asks user for count
Usage
user_count(question)
Arguments
question |
question |
user_numeric
Description
asks user for numeric
Usage
user_numeric(question)
Arguments
question |
question |
user_options
Description
asks user for option from specified list
Usage
user_options(question, allowed_answers)
Arguments
question |
question |
allowed_answers |
allowed answers |
user_rotate_graph
Description
Rotates/flips imported figures according to user input, in order to align them properly. Asks the user after each change if further alteration is required
Usage
user_rotate_graph(image_file)
Arguments
image_file |
Image filename |
user_unique
Description
asks user for option from specified list
Usage
user_unique(question, previous_answers)
Arguments
question |
question |
previous_answers |
allowed answers |