## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup,include=FALSE------------------------------------------------------ library(mergen) ## ----------------------------------------------------------------------------- myAgent <- setupAgent(name="openai",type="chat",model="gpt-4",ai_api_key = "your_key") myAgent ## ----------------------------------------------------------------------------- myAgent <- setupAgent(name="replicate",type=NULL,model="llama-2-70b-chat",ai_api_key="my_key") myAgent ## ----eval=FALSE--------------------------------------------------------------- # answer <- sendPrompt(myAgent, # "how do I perform PCA on data in # a file called test.txt?",return.type = "text") # answer ## ----echo = FALSE------------------------------------------------------------- answer <- "\n\nThe following R code will read the file called \"test.txt\", normalize the table and do PCA. First, the code will read the file into an R data frame: \n\n```\ndata <- read.table(\"test.txt\", header = TRUE, sep = \"\\t\")\n```\n\nNext, the data will be normalized to the range of 0 to 1:\n\n```\nnormalized.data <- scale(data, center = TRUE, scale = TRUE)\n```\n\nFinally, the normalized data will be used to do a Principal Component Analysis (PCA):\n\n```\npca <- princomp(normalized.data)\n```" print (answer) ## ----include=FALSE------------------------------------------------------------ botResponses <- list( "\n\nThe following R code will read the file called \"test.txt\", normalize the table and do PCA. First, the code will read the file into an R data frame: \n\n```R\ndata <- read.table(\"test.txt\", header = TRUE, sep = \"\\t\")\n```\n\nNext, the data will be normalized to the range of 0 to 1:\n\n```{r}\nnormalized.data <- scale(data, center = TRUE, scale = TRUE)\n```\n\nFinally, the normalized data will be used to do a Principal Component Analysis (PCA):\n\n```{R}\npca <- princomp(normalized.data)\n```", "\n\nThe second response.The following R code will read the file called \"test.txt\", normalize the table and do PCA. First, the code will read the file into an R data frame: \n\n```\ndata <- read.table(\"test.txt\", header = TRUE, sep = \"\\t\")\n```\n\nNext, the data will be normalized to the range of 0 to 1:\n\n```\nnormalized.data <- scale(data, center = TRUE, scale = TRUE)\n```\n\nFinally, the normalized data will be used to do a Principal Component Analysis (PCA):\n\n```\npca <- princomp(normalized.data)\n```", "\n\nThe third response.The following R code will read the file called \"test.txt\", normalize the table and do PCA. First, the code will read the file into an R data frame: \n\n```{r}\nplot(1:10)```\n\nNext, the data will be normalized to the range of 0 to 1:\n\n" ) answer <- list(init.response=botResponses[[1]], init.blocks=extractCode(clean_code_blocks(botResponses[[1]])), final.response=botResponses[[3]], final.blocks=extractCode(clean_code_blocks(botResponses[[3]])), code.works=TRUE, exec.result="path/to/html/file", tried.attempts=3) ## ----eval=FALSE--------------------------------------------------------------- # answer <- selfcorrect(myAgent, prompt="How do I perform PCA?",attempts=3) ## ----------------------------------------------------------------------------- print(answer) ## ----------------------------------------------------------------------------- code_cleaned <- clean_code_blocks(answer$final.response) cat(code_cleaned) ## ----------------------------------------------------------------------------- final_code <- extractCode(code_cleaned,delimiter = "```") print (final_code) ## ----------------------------------------------------------------------------- executeCode(final_code$code)