## ---- echo = FALSE, results='hide', include=FALSE------------------------ library(mdpeer) library(glmnet) library(ggplot2) ## ---- fig.width = 3.3, fig.height = 2.8---------------------------------- library(mdpeer) n <- 100 p1 <- 10 p2 <- 40 p <- p1 + p2 # Define graph adjacency matrix A <- matrix(rep(0, p*p), nrow = p, ncol = p) A[1:p1, 1:p1] <- 1 A[(p1+1):p, (p1+1):p] <- 1 diag(A) <- rep(0,p) # Compute graph Laplacian matrix L <- Adj2Lap(A) vizu.mat(A, "graph adjacency matrix", 9); vizu.mat(L, "graph Laplacian matrix", 9) ## ------------------------------------------------------------------------ # simulate data objects set.seed(1) Z <- scale(matrix(rnorm(n*p), nrow = n, ncol = p)) X <- cbind(1, scale(matrix(rnorm(n*3), nrow = n, ncol = 3))) # cbind with 1s col. for intercept b.true <- c(rep(1,p1), rep(0,p2)) # coefficients of interest (penalized) beta.true <- c(0, runif(3)) # intercept=0 and 3 coefficients (non-penalized) eta <- Z %*% b.true + X %*% beta.true R2 <- 0.5 # assumed variance explained sd.eps <- sqrt(var(eta) * (1 - R2) / R2) error <- rnorm(n, sd = sd.eps) y <- eta + error ## ------------------------------------------------------------------------ # estimate with riPEER riPEER.out <- riPEER(Q = L, y = y, Z = Z, X = X, verbose = FALSE) b.est.riPEER <- riPEER.out$b.est # (graph penalty regulatization parameter, ridge penalty regularization parameter) c(riPEER.out$lambda.Q, riPEER.out$lambda.R) # estimate with cv.glmnet library(glmnet) cv.out.glmnet <- cv.glmnet(x = cbind(X,Z), y = y, alpha = 0, intercept = FALSE) b.est.cv.glmnet <- unlist(coef(cv.out.glmnet))[5:54] # exclude intercept and covs ## ---- echo = FALSE, fig.width=7, fig.height=3---------------------------- plt.df <- data.frame(x = rep(1:p,2), b.coef = c(b.est.riPEER,b.est.cv.glmnet), est.method = c(rep("riPEER",p), rep("cv.glmnet",p))) ggplot(plt.df, aes(x=x,y=b.coef,group=est.method, color=est.method)) + geom_line(data = data.frame(x=1:p,y=b.true), aes(x=x,y=y),inherit.aes=FALSE) + geom_line() + geom_point() + theme_bw(base_size = 9) + labs(title = "black line: b.true", color = "estimation\nmethod") ## ------------------------------------------------------------------------ MSEr <- function(b.true, b.est) sum((b.true-b.est)^2)/sum(b.true^2) # (riPEER error, cv.glmnet error) c(MSEr(b.true,b.est.riPEER), MSEr(b.true,b.est.cv.glmnet)) ## ------------------------------------------------------------------------ # simulate data objects set.seed(1) Z <- scale(matrix(rnorm(n*p), nrow = n, ncol = p)) X <- cbind(1, scale(matrix(rnorm(n*3), nrow = n, ncol = 3))) b.true <- rep(c(-1,1), p/2) # coefficients of interest (penalized) beta.true <- c(0, runif(3)) # intercept=0 and 3 coefficients (non-penalized) eta <- Z %*% b.true + X %*% beta.true R2 <- 0.5 # assumed variance explained sd.eps <- sqrt(var(eta) * (1 - R2) / R2) error <- rnorm(n, sd = sd.eps) y <- eta + error ## ------------------------------------------------------------------------ # estimate with riPEER riPEER.out <- riPEER(Q = L, y = y, Z = Z, X = X, verbose = FALSE) b.est.riPEER <- riPEER.out$b.est c(riPEER.out$lambda.Q, riPEER.out$lambda.R) # estimate with cv.glmnet cv.out.glmnet <- cv.glmnet(x = cbind(X,Z), y = y, alpha = 0, intercept = FALSE) b.est.cv.glmnet <- unlist(coef(cv.out.glmnet))[5:54] # exclude intercept and covs ## ---- echo = FALSE, fig.width=7, fig.height=3---------------------------- plt.df <- data.frame(x = rep(1:p,2), b.coef = c(b.est.riPEER,b.est.cv.glmnet), est.method = c(rep("riPEER",p), rep("cv.glmnet",p))) ggplot(plt.df, aes(x=x,y=b.coef,group=est.method, color=est.method)) + geom_line(data = data.frame(x=1:p,y=b.true), aes(x=x,y=y),inherit.aes=FALSE) + geom_line() + geom_point() + theme_bw(base_size = 9) + labs(title = "black line: b.true", color = "estimation\nmethod") ## ------------------------------------------------------------------------ MSEr <- function(b.true, b.est) sum((b.true-b.est)^2)/sum(b.true^2) # (riPEER error, cv.glmnet error) c(MSEr(b.true,b.est.riPEER), MSEr(b.true,b.est.cv.glmnet)) ## ------------------------------------------------------------------------ # example based on `glmnet::cv.glmnet` CRAN documentation set.seed(1010) n=1000;p=100 nzc=trunc(p/10) x=matrix(rnorm(n*p),n,p) beta=rnorm(nzc) fx= x[,seq(nzc)] %*% beta eps=rnorm(n)*5 y=drop(fx+eps) set.seed(1011) cvob1=cv.glmnet(x,y, alpha = 0) est.cv.glmnet <- coef(cvob1)[-c(1)] # exclude intercept and covs # use riPEERc (X has column of 1s to represent intercept in a model) riPEERc.out <- riPEERc(Q = diag(p), y = matrix(y), Z = x, X = matrix(rep(1,n))) est.riPEERc <- riPEERc.out$b.est ## ---- echo = FALSE, fig.width=7, fig.height=3---------------------------- plt.df <- data.frame(x = rep(1:p,2), b.coef = c(est.riPEERc,est.cv.glmnet), est.method = c(rep("riPEERc",p), rep("cv.glmnet",p))) ggplot(plt.df, aes(x=x,y=b.coef,group=est.method, color=est.method)) + geom_line(data = data.frame(x=1:p,y=beta), aes(x=x,y=y),inherit.aes=FALSE) + geom_line() + geom_point() + theme_bw(base_size = 9) + labs(title = "black line: true", color = "estimation\nmethod") ## ------------------------------------------------------------------------ MSEr <- function(b.true, b.est) sum((b.true-b.est)^2)/sum(b.true^2) # (riPEER error, cv.glmnet error) c(MSEr(beta,est.riPEERc), MSEr(beta,est.cv.glmnet))