## ----------------------------------------------------------------------------- require(mcunit) set.seed(10) ## ----------------------------------------------------------------------------- gen <- function(){ x <- rnorm(10) t.test(x)$p.value<0.05 } ## ----------------------------------------------------------------------------- J <- matrix(nrow=2,c(0,0.045, 0.04,0.06, 0.055,1)) colnames(J) <- c("low","ok","high") J ## ----------------------------------------------------------------------------- expect_bernoulli(gen,J=J,ok="ok") ## ----------------------------------------------------------------------------- J <- matrix(nrow=2,c(0,0.04,0.035,0.065, 0.06,1)) colnames(J) <- c("low", "ok","high") J gen <- function()as.numeric(chisq.test(c(rmultinom(1,size=15,prob=c(1/3,1/3,1/3))))$p.value<0.05) expect_bernoulli(gen,J=J,ok="ok") ## ----------------------------------------------------------------------------- gen <- function(){ x <- rnorm(10,mean=3.7) CI <- t.test(x)$conf.int as.numeric(CI[1]<=3.7&CI[2]>=3.7) } ## ----------------------------------------------------------------------------- J <- matrix(nrow=2,c(0,0.945, 0.94,0.96, 0.955,1)) colnames(J) <- c("low","ok","high") J ## ----------------------------------------------------------------------------- expect_bernoulli(gen,J=J,ok="ok")