## ---- echo = FALSE------------------------------------------------------------ knitr::opts_chunk$set(collapse = T, comment = "#>", warning = FALSE, message = FALSE) options(tibble.print_min = 4L, tibble.print_max = 4L) ## ---- fig.width=8, out.width='100%', fig.cap='Plot of the bi-objective sample graph `g.'---- library(mcMST) library(grapherator) set.seed(1) # reproducability g = graph(0, 10) g = addNodes(g, n = 25, generator = addNodesUniform) g = addWeights(g, generator = addWeightsDistance, method = "euclidean") g = addWeights(g, generator = addWeightsRandom, method = rnorm, mean = 5, sd = 1.5) print(g) do.call(gridExtra::grid.arrange, c(plot(g), list(nrow = 1L))) ## ---- fig.width=8, out.width='100%', fig.cap="Approximation of the Pareto-front of the benchmark graph instance."---- res = mcMSTEmoaZhou(g, mu = 30L, lambda = 10L, max.iter = 500L) head(res$pareto.front, n = 5) ecr::plotFront(res$pareto.front)